
λ
→

∀
=Is

ab
el
le

β

α

The Isabelle System Manual

Makarius Wenzel

With Contributions by Fabian Huch

18 January 2026

Contents

1 The Isabelle system environment 1
1.1 Isabelle settings . 1

1.1.1 Bootstrapping the environment 1
1.1.2 Common variables . 2
1.1.3 Additional components 5

1.2 The Isabelle tool wrapper . 6
1.3 The raw ML process . 7

1.3.1 The raw ML process as command-line tool 7
1.3.2 Interactive mode . 9

1.4 The raw Isabelle Java process 9
1.5 System registry via TOML 10
1.6 YXML versus XML . 11

2 Isabelle sessions and build management 13
2.1 Session ROOT specifications 13
2.2 System build options . 20
2.3 Invoking the build process . 23
2.4 Print messages from session build database 28
2.5 Retrieve theory exports . 30
2.6 Dump PIDE session database 31
2.7 Update theory sources based on PIDE markup 32
2.8 Explore sessions structure . 34
2.9 Synchronize source repositories and session images for Isabelle

and AFP . 35
2.10 Remote build management . 37

2.10.1 Build manager server 38
2.10.2 Submitting build tasks 39

2.11 Process theories within a session context 40

i

CONTENTS ii

3 Presenting theories 43
3.1 Generating HTML browser information 43
3.2 Creating session root directories 44
3.3 Preparing Isabelle session documents 45
3.4 Full-text search for formal theory content 47

4 The Isabelle server 49
4.1 Command-line tools . 49

4.1.1 Server . 49
4.1.2 Client . 50
4.1.3 Examples . 51

4.2 Protocol messages . 52
4.2.1 Byte messages . 52
4.2.2 Text messages . 53
4.2.3 Input and output messages 53
4.2.4 Initial password exchange 54
4.2.5 Synchronous commands 54
4.2.6 Asynchronous commands 55

4.3 Types for JSON values . 55
4.4 Server commands and results 60

4.4.1 Command help . 60
4.4.2 Command echo . 61
4.4.3 Command shutdown 61
4.4.4 Command cancel . 61
4.4.5 Command session_build 62
4.4.6 Command session_start 64
4.4.7 Command session_stop 66
4.4.8 Command use_theories 66
4.4.9 Command purge_theories 69

5 Isabelle/Scala systems programming 71
5.1 Command-line tools . 72

5.1.1 Java Runtime Environment 72
5.1.2 Scala toplevel . 72
5.1.3 Scala compiler . 73

CONTENTS iii

5.2 Isabelle/Scala/Java modules 73
5.2.1 Component configuration via etc/build.props 73
5.2.2 Explicit Isabelle/Scala/Java build 75
5.2.3 Project setup for common Scala IDEs 76

5.3 Registered Isabelle/Scala functions 77
5.3.1 Defining functions in Isabelle/Scala 77
5.3.2 Invoking functions in Isabelle/ML 77

5.4 Documenting Isabelle/Scala entities 79

6 Phabricator / Phorge server setup 82
6.1 Quick start . 83

6.1.1 Initial setup . 83
6.1.2 Mailer configuration 85
6.1.3 SSH configuration . 85
6.1.4 Internet domain name and HTTPS configuration . . . 86

6.2 Global data storage and backups 87
6.3 Upgrading Phorge installations 88
6.4 Reference of command-line tools 89

6.4.1 isabelle phabricator 89
6.4.2 isabelle phabricator_setup 90
6.4.3 isabelle phabricator_setup_mail 91
6.4.4 isabelle phabricator_setup_ssh 92

7 Miscellaneous tools 93
7.1 Building Isabelle docker images 93
7.2 Managing Isabelle components 95
7.3 Viewing documentation . 96
7.4 Shell commands within the settings environment 97
7.5 Inspecting the settings environment 97
7.6 Mercurial repository setup . 98
7.7 Mercurial repository synchronization 99
7.8 Installing standalone Isabelle executables 100
7.9 Creating instances of the Isabelle logo 101
7.10 Output the version identifier of the Isabelle distribution 101
7.11 Managed installations of Haskell and OCaml 102

CONTENTS iv

Bibliography 103

Index 104

Chapter 1

The Isabelle system
environment

This manual describes Isabelle together with related tools as seen from a
system oriented view. See also the Isabelle/Isar Reference Manual [5] for the
actual Isabelle input language and related concepts, and The Isabelle/Isar
Implementation Manual [4] for the main concepts of the underlying imple-
mentation in Isabelle/ML.

1.1 Isabelle settings
Isabelle executables may depend on the Isabelle settings within the process
environment. This is a statically scoped collection of environment variables,
such as ISABELLE_HOME, ML_SYSTEM, POLYML_HOME. These variables are not
intended to be set directly from the shell, but are provided by Isabelle com-
ponents within their settings files, as explained below.

1.1.1 Bootstrapping the environment
Isabelle executables need to be run within a proper settings environment.
This is bootstrapped as described below, on the first invocation of one of
the outer wrapper scripts (such as isabelle). This happens only once for
each process tree, i.e. the environment is passed to subprocesses according
to regular Unix conventions.

1. The special variable ISABELLE_HOME is determined automatically from
the location of the binary that has been run.
You should not try to set ISABELLE_HOME manually. Also note that the
Isabelle executables either have to be run from their original location
in the distribution directory, or via the executable objects created by
the isabelle install tool. Symbolic links are admissible, but a plain
copy of the $ISABELLE_HOME/bin files will not work!

1

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 2

2. The file $ISABELLE_HOME/etc/settings is run as a bash shell script
with the auto-export option for variables enabled.
This file holds a rather long list of shell variable assignments, thus pro-
viding the site-wide default settings. The Isabelle distribution already
contains a global settings file with sensible defaults for most variables.

3. The file $ISABELLE_HOME_USER/etc/settings (if it exists) is run in
the same way as the site default settings. Note that the variable
ISABELLE_HOME_USER has already been set before — usually to some-
thing like $USER_HOME/.isabelle/Isabelle2025-2.
Thus individual users may override the site-wide defaults. Typically, a
user settings file contains only a few lines, with some assignments that
are actually changed. Never copy the central $ISABELLE_HOME/etc/
settings file!

Since settings files are regular GNU bash scripts, one may use complex shell
commands, such as if or case statements to set variables depending on the
system architecture or other environment variables. Such advanced features
should be added only with great care, though. In particular, external envi-
ronment references should be kept at a minimum.

A few variables are somewhat special, e.g. ISABELLE_TOOL is set automati-
cally to the absolute path name of the isabelle executables.

Note that the settings environment may be inspected with the
isabelle getenv tool. This might help to figure out the effect of com-
plex settings scripts.

1.1.2 Common variables
This is a reference of common Isabelle settings variables. Note that the list
is somewhat open-ended. Third-party utilities or interfaces may add their
own selection. Variables that are special in some sense are marked with ∗.

USER_HOME∗ Is the cross-platform user home directory. On Unix systems this
is usually the same as HOME, but on Windows it is the regular home
directory of the user, not the one of within the Cygwin root file-system.1

1Cygwin itself offers another choice whether its HOME should point to the /home
directory tree or the Windows user home.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 3

ISABELLE_HOME∗ is the location of the top-level Isabelle distribution direc-
tory. This is automatically determined from the Isabelle executable
that has been invoked. Do not attempt to set ISABELLE_HOME yourself
from the shell!

ISABELLE_HOME_USER is the user-specific counterpart of ISABELLE_HOME.
The default value is relative to $USER_HOME/.isabelle, under rare
circumstances this may be changed in the global setting file. Typically,
the ISABELLE_HOME_USER directory mimics ISABELLE_HOME to some ex-
tend. In particular, site-wide defaults may be overridden by a private
$ISABELLE_HOME_USER/etc/settings.

ISABELLE_PLATFORM_FAMILY∗ is automatically set to the general platform
family (linux, macos, windows). Note that platform-dependent
tools usually need to refer to the more specific identification ac-
cording to ISABELLE_PLATFORM64, ISABELLE_WINDOWS_PLATFORM64,
ISABELLE_APPLE_PLATFORM64.

ISABELLE_PLATFORM64∗ indicates the standard Posix platform (x86_64,
arm64), together with a symbolic name for the operating system
(linux, darwin, cygwin).

ISABELLE_WINDOWS_PLATFORM64∗, ISABELLE_WINDOWS_PLATFORM32∗ indi-
cate the native Windows platform: both 64 bit and 32 bit executables
are supported here.
In GNU bash scripts, a preference for native Windows platform variants
may be specified like this (first 64 bit, second 32 bit):

"${ISABELLE_WINDOWS_PLATFORM64:-${ISABELLE_WINDOWS_PLATFORM32:-
$ISABELLE_PLATFORM64}}"

ISABELLE_APPLE_PLATFORM64∗ indicates the native Apple Silicon platform
(arm64-darwin if available), instead of Intel emulation via Rosetta
(ISABELLE_PLATFORM64=x86_64-darwin).

ISABELLE_TOOL∗ is automatically set to the full path name of the isabelle
executable.

ISABELLE_IDENTIFIER∗ refers to the name of this Isabelle distribution, e.g.
“Isabelle2025-2”.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 4

ML_OPTIONS, ML_OPTIONS32, ML_OPTIONS64 provide command-line options
to the underlying ML system of Isabelle. ML_OPTIONS is empty by
default, but if a proper value is provided (e.g. via user settings) that
takes precedence. Otherwise, ML_OPTIONS32 or ML_OPTIONS64 will be
used, depending on the system option ML_system_64.

ISABELLE_JDK_HOME points to a full JDK (Java Development Kit) instal-
lation with javac and jar executables. Note that conventional
JAVA_HOME points to the JRE (Java Runtime Environment), not the
JDK.

ISABELLE_JAVA_PLATFORM identifies the hardware and operating system
platform for the Java installation of Isabelle. That is always the (na-
tive) 64 bit variant: x86_64-linux, x86_64-darwin, x86_64-windows.

ISABELLE_BROWSER_INFO is the directory where HTML and PDF
browser information is stored (see also §3.1); its default is
$ISABELLE_HOME_USER/browser_info. For “system build mode” (see
§2.3), ISABELLE_BROWSER_INFO_SYSTEM is used instead; its default is
$ISABELLE_HOME/browser_info.

ISABELLE_HEAPS is the directory where session heap images, log
files, and session build databases are stored; its default
is $ISABELLE_HOME_USER/heaps. If system_heaps is true,
ISABELLE_HEAPS_SYSTEM is used instead; its default is $ISABELLE_HOME/
heaps. See also §2.3.

ISABELLE_LOGIC specifies the default logic to load if none is given explicitly
by the user. The default value is HOL.

ISABELLE_LINE_EDITOR specifies the line editor for the isabelle console
interface.

ISABELLE_PDFLATEX, ISABELLE_LUALATEX, ISABELLE_BIBTEX, ISABELLE_MAKEINDEX
refer to LATEX-related tools for Isabelle document preparation (see also
§3.3).

ISABELLE_TOOLS is a colon separated list of directories that are scanned by
isabelle for external utility programs (see also §1.2).

ISABELLE_DOCS is a colon separated list of directories with documentation
files.

PDF_VIEWER specifies the program to be used for displaying pdf files.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 5

ISABELLE_TMP_PREFIX∗ is the prefix from which any running Isabelle ML
process derives an individual directory for temporary files.

ISABELLE_TOOL_JAVA_OPTIONS is passed to the java executable when run-
ning Isabelle tools (e.g. isabelle build). This is occasionally helpful
to provide more heap space, via additional options like -Xms1g -Xmx4g.

1.1.3 Additional components
Any directory may be registered as an explicit Isabelle component. The
general layout conventions are that of the main Isabelle distribution itself,
and the following two files (both optional) have a special meaning:

• etc/settings holds additional settings that are initialized when boot-
strapping the overall Isabelle environment, cf. §1.1.1. As usual, the
content is interpreted as a GNU bash script. It may refer to the com-
ponent’s enclosing directory via the COMPONENT shell variable.
For example, the following setting allows to refer to files within the
component later on, without having to hardwire absolute paths:

MY_COMPONENT_HOME="$COMPONENT"

Components can also add to existing Isabelle settings such as
ISABELLE_TOOLS, in order to provide component-specific tools that can
be invoked by end-users. For example:

ISABELLE_TOOLS="$ISABELLE_TOOLS:$COMPONENT/lib/Tools"

• etc/components holds a list of further sub-components of the same
structure. The directory specifications given here can be either absolute
(with leading /) or relative to the component’s main directory.

The root of component initialization is ISABELLE_HOME itself. After initial-
izing all of its sub-components recursively, ISABELLE_HOME_USER is included
in the same manner (if that directory exists). This allows to install private
components via $ISABELLE_HOME_USER/etc/components, although it is of-
ten more convenient to do that programmatically via the init_component
shell function in the etc/settings script of $ISABELLE_HOME_USER (or any
other component directory). For example:

init_component "$HOME/screwdriver-2.0"

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 6

This is tolerant wrt. missing component directories, but might produce a
warning.

More complex situations may be addressed by initializing components listed
in a given catalog file, relatively to some base directory:
init_components "$HOME/my_component_store" "some_catalog_file"

The component directories listed in the catalog file are treated as relative to
the given base directory.
See also §7.2 for some tool-support for resolving components that are formally
initialized but not installed yet.

1.2 The Isabelle tool wrapper
The main Isabelle tool wrapper provides a generic startup environment for
Isabelle-related utilities, user interfaces, add-on applications etc. Such tools
automatically benefit from the settings mechanism (§1.1). Moreover, this
is the standard way to invoke Isabelle/Scala functionality as a separate
operating-system process. Isabelle command-line tools are run uniformly
via a common wrapper — isabelle:
Usage: isabelle TOOL [ARGS ...]

Start Isabelle TOOL with ARGS; pass "-?" for tool-specific help.

Available tools:
...

Tools may be implemented in Isabelle/Scala or as stand-alone executables
(usually as GNU bash scripts). In the invocation of “isabelle tool”, the
named tool is resolved as follows (and in the given order).

1. An external tool found on the directories listed in the ISABELLE_TOOLS
settings variable (colon-separated list in standard POSIX notation). It
is invoked as stand-alone program with the command-line arguments
provided as argv array.

2. An internal tool that is declared via class isabelle.Isabelle_Scala_Tools
and registered via services in etc/build.props. See §5.2 for more
details.

There are also various administrative tools that are available from a bare
repository clone of Isabelle, but not in regular distributions.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 7

Examples

Show the list of available documentation of the Isabelle distribution:

isabelle doc

View a certain document as follows:

isabelle doc system

Query the Isabelle settings environment:

isabelle getenv ISABELLE_HOME_USER

1.3 The raw ML process
The raw ML process has limited use in actual applications: it lacks the full ses-
sion context that is required for export artifacts, Isabelle/ML/Scala integra-
tion and Prover IDE messages or markup. It is better to use isabelle build
(§2.3) for regular sessions, or its front-end isabelle process_theories
(§2.11) for adhoc sessions.

1.3.1 The raw ML process as command-line tool
The isabelle ML_process tool runs the raw ML process from the command-
line:

Usage: isabelle ML_process [OPTIONS]

Options are:
-C DIR change working directory
-d DIR include session directory
-e ML_EXPR evaluate ML expression on startup
-f ML_FILE evaluate ML file on startup
-l NAME logic session name (default ISABELLE_LOGIC="HOL")
-m MODE add print mode for output
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-r redirect stderr to stdout

Run the raw ML process without Isabelle/Scala context.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 8

Note that is often better to run the raw ML process directly from
Isabelle/ML (via Isabelle_System.ML_process) or Isabelle/Scala (via
isabelle.ML_Process): both avoid another bulky Java process.

Options -e and -f allow to evaluate ML code, before the ML process is
started. The source is either given literally or taken from a file. Multiple -e
and -f options are evaluated in the given order. Errors lead to a premature
exit of the ML process with return code 1.

Option -l specifies the logic session name. Option -d specifies additional
directories for session roots, see also §2.3.

The -m option adds identifiers of print modes to be made active for this ses-
sion. For example, -m ASCII prefers ASCII replacement syntax over mathe-
matical Isabelle symbols.

Option -o allows to override Isabelle system options for this process, see also
§2.2.

Option -C specifies an explicit working directory. Option -r redirects stderr
to stdout.

Examples

The subsequent example retrieves the Main theory value from the theory
loader within ML:

isabelle ML_process -e ’Thy_Info.get_theory "Main"’

Observe the delicate quoting rules for the GNU bash shell vs. ML. The
Isabelle/ML and Scala libraries provide functions for that, but here we need
to do it manually.

This is how to invoke a function body with proper return code and printing
of errors, and without printing of a redundant val it = (): unit result:

isabelle ML_process -e ’Command_Line.tool (fn () => writeln "OK")’

isabelle ML_process -e ’Command_Line.tool (fn () => error "Bad")’

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 9

1.3.2 Interactive mode
The isabelle console tool runs the raw ML process with interactive con-
sole and line editor:

Usage: isabelle console [OPTIONS]

Options are:
-d DIR include session directory
-i NAME include session in name-space of theories
-l NAME logic session name (default ISABELLE_LOGIC)
-m MODE add print mode for output
-n no build of session image on startup
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-r bootstrap from raw Poly/ML

Build a logic session image and run the raw Isabelle ML process
in interactive mode, with line editor ISABELLE_LINE_EDITOR.

Option -l specifies the logic session name. By default, its heap image is
checked and built on demand, but the option -n skips that.
Option -i includes additional sessions into the name-space of theories: mul-
tiple occurrences are possible.
Option -r indicates a bootstrap from the raw Poly/ML system, which is
relevant for Isabelle/Pure development.

Options -d, -m, -o have the same meaning as for isabelle ML_process
(§1.3).

The Isabelle/ML process is run through the line editor that is specified via
the settings variable ISABELLE_LINE_EDITOR (e.g. rlwrap for GNU readline);
the fall-back is to use plain standard input/output.
The user is connected to the raw ML toplevel loop: this is neither Isabelle/Isar
nor Isabelle/ML within the usual formal context. The most relevant ML
commands at this stage are “use "ROOT0.ML"” and “use "ROOT.ML"” to
load the ML sources of Isabelle/Pure interactively.

1.4 The raw Isabelle Java process
The isabelle_java executable allows to run a Java process within the name
space of Java and Scala components that are bundled with Isabelle, but
without the Isabelle settings environment (§1.1).

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 10

After such a JVM cold-start, the Isabelle environment can be accessed via
Isabelle_System.getenv as usual, but the underlying process environment
remains clean. This is e.g. relevant when invoking other processes that should
remain separate from the current Isabelle installation.

Note that under normal circumstances, Isabelle command-line tools are run
within the settings environment, as provided by the isabelle wrapper (§1.2
and §5.1.1).

Example

The subsequent example creates a raw Java process on the command-line
and invokes the main Isabelle application entry point:

isabelle_java -Djava.awt.headless=false isabelle.jedit.JEdit_Main

1.5 System registry via TOML
Tools implemented in Isabelle/Scala may refer to a global registry of hier-
archically structured values, which is based on a collection of TOML files.
TOML is conceptually similar to JSON, but aims at human-readable syntax.
The recursive structure of a TOML value is defined as follows:

1. atom: string, integer, float, bool, date (ISO-8601)

2. array: sequence of values t, written [t1,. . .,tn]

3. table: mapping from names a to values t, written {a1=t1,. . .,an=tn}

There are various alternative syntax forms for convenience, e.g. to construct
a table of tables, using header syntax that resembles traditional .INI-file
notation. For example:

[point.A]
x = 1
y = 1
description = "one point"

[point.B]
x = 2
y = -2
description = "another point"

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 11

[point.C]
x = 3
y = 7
description = "yet another point"

Or alternatively like this:

point.A.x = 1
point.A.y = 1
point.A.description = "one point"

point.B.x = 2
point.B.y = -2
point.B.description = "another point"

point.C.x = 3
point.C.y = 7
point.C.description = "yet another point"

The TOML website2 provides many examples, together with the full language
specification. Note that the Isabelle/Scala implementation of TOML uses the
default ISO date/time format of Java.3

The overall system registry is collected from registry.toml files in direc-
tories specified via the settings variable ISABELLE_REGISTRY: this refers to
$ISABELLE_HOME and $ISABELLE_HOME_USER by default, but further directo-
ries may be specified via the GNU bash function isabelle_registry within
etc/settings of Isabelle components.
The result is available as Isabelle/Scala object isabelle.Registry.global.
That is empty by default, unless users populate $ISABELLE_HOME_USER/etc/
registry.toml or provide other component etc/registry.toml files.

1.6 YXML versus XML
Isabelle tools often use YXML, which is a simple and efficient syntax for
untyped XML trees. The YXML format is defined as follows.

1. The encoding is always UTF-8.
2https://toml.io/en/v1.0.0
3https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/time/format/

DateTimeFormatter.html

https://toml.io/en/v1.0.0
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/time/format/DateTimeFormatter.html

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 12

2. Body text is represented verbatim (no escaping, no special treatment
of white space, no named entities, no CDATA chunks, no comments).

3. Markup elements are represented via ASCII control characters X = 5
and Y = 6 as follows:
XML YXML
<name attribute=value . . .> XYnameYattribute=value. . .X
</name> XYX

There is no special case for empty body text, i.e. <foo/> is treated like
<foo></foo>. Also note that X and Y may never occur in well-formed
XML documents.

Parsing YXML is pretty straight-forward: split the text into chunks sepa-
rated by X, then split each chunk into sub-chunks separated by Y. Markup
chunks start with an empty sub-chunk, and a second empty sub-chunk in-
dicates close of an element. Any other non-empty chunk consists of plain
text. For example, see ~~/src/Pure/PIDE/yxml.ML or ~~/src/Pure/PIDE/
yxml.scala.
YXML documents may be detected quickly by checking that the first two
characters are XY.

Chapter 2

Isabelle sessions and build
management

An Isabelle session consists of a collection of related theories that may be
associated with formal documents (chapter 3). There is also a notion of
persistent heap image to capture the state of a session, similar to object-code
in compiled programming languages. Thus the concept of session resembles
that of a “project” in common IDE environments, but the specific name
emphasizes the connection to interactive theorem proving: the session wraps-
up the results of user-interaction with the prover in a persistent form.
Application sessions are built on a given parent session, which may be built
recursively on other parents. Following this path in the hierarchy eventually
leads to some major object-logic session like HOL, which itself is based on
Pure as the common root of all sessions.
Processing sessions may take considerable time. Isabelle build management
helps to organize this efficiently. This includes support for parallel build jobs,
in addition to the multithreaded theory and proof checking that is already
provided by the prover process itself.

2.1 Session ROOT specifications
Session specifications reside in files called ROOT within certain directories,
such as the home locations of registered Isabelle components or additional
project directories given by the user.
The ROOT file format follows the lexical conventions of the outer syntax
of Isabelle/Isar, see also [5]. This defines common forms like identifiers,
names, quoted strings, verbatim text, nested comments etc. The grammar
for chapter_def , chapter_entry and session_entry is given as syntax dia-
gram below. Each ROOT file may contain multiple specifications like this.
Chapters help to organize browser info (§3.1), but have no formal meaning.
The default chapter is “Unsorted”. Chapter definitions, which are optional,

13

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 14

allow to associate additional information.
Isabelle/jEdit [6] includes a simple editing mode isabelle-root for session
ROOT files, which is enabled by default for any file of that name.

chapter_def

chapter_definition
�� ��name �

��
��

�groups

�
�

�
�description

�
�

chapter_entry

chapter
�� ��name

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 15

session_entry

session
�� ��system_name �

�groups

�
�

�
�dir

�
�

=
�����

��
��

�system_name +
����

�
�

�
�description

�
�

�
�options

�
�

�

��
��

�sessions

�
�

�
�directories

�
�

�
�theories

�
�

�

��
��

�document_theories

�
�

�
�document_files

�
�

�

��
��

�export_files

�
�

�
�export_classpath

�
�

groups

(
���� name�

�
�
�

)
����

dir

in
����embedded

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 16

description

description
�� ��text

options

options
�� ��opts

opts

[
���� name =

����value�
�name

�
�

�

� ,
����

�

�

]
����

value

name�
�real

�
�

sessions

sessions
�� �� system_name�

�
�
�

directories

directories
�� �� dir�

�
�
�

theories

theories
�� ���

�opts

�
�

theory_entry�
�

�
�

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 17

theory_entry

system_name �
� (

����global
�� ��)

����
�
�

document_theories

document_theories
�� �� name�

�
�
�

document_files

document_files
�� ���

� (
����dir)

����
�
�

embedded�
�

�
�

export_files

export_files
�� ���

� (
����dir)

����
�
�

�
� [

����nat]
����

�
�

�

��
� embedded�

�
�
�

export_classpath

export_classpath
�� ���

�embedded

�
�

chapter_definition A (groups) associates a collection of groups with chap-
ter A. All sessions that belong to this chapter will automatically become
members of these groups.

session A = B + body defines a new session A based on parent session B,
with its content given in body (imported sessions and theories). Note

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 18

that a parent (like HOL) is mandatory in practical applications: only
Isabelle/Pure can bootstrap itself from nothing.
All such session specifications together describe a hierarchy (graph) of
sessions, with globally unique names. The new session name A should
be sufficiently long and descriptive to stand on its own in a potentially
large library.

session A (groups) indicates a collection of groups where the new session is
a member. Group names are uninterpreted and merely follow certain
conventions. For example, the Isabelle distribution tags some impor-
tant sessions by the group name called “main”. Other projects may in-
vent their own conventions, but this requires some care to avoid clashes
within this unchecked name space.

session A in dir specifies an explicit directory for this session; by default
this is the current directory of the ROOT file.
All theory files are located relatively to the session directory. The
prover process is run within the same as its current working directory.

description text is a free-form description for this session (or chapter), e.g.
for presentation purposes.

options [x = a, y = b, z] defines separate options (§2.2) that are used when
processing this session, but without propagation to child sessions. Note
that z abbreviates z = true for Boolean options.

sessions names specifies sessions that are imported into the current name
space of theories. This allows to refer to a theory A from session B by
the qualified name B.A — although it is loaded again into the current
ML process, which is in contrast to a theory that is already present in
the parent session.
Theories that are imported from other sessions are excluded from the
current session document.

directories dirs specifies additional directories for import of theory files
via theories within ROOT or imports within a theory; dirs are relative
to the main session directory (cf. session . . . in dir). These directories
need to be exclusively assigned to a unique session, without implicit
sharing of file-system locations.

theories options names specifies a block of theories that are processed
within an environment that is augmented by the given options, in ad-
dition to the global session options given before. Any number of blocks

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 19

of theories may be given. Options are only active for each theories
block separately.
A theory name that is followed by (global) is treated literally in other
session specifications or theory imports — the normal situation is to
qualify theory names by the session name; this ensures globally unique
names in big session graphs. Global theories are usually the entry
points to major logic sessions: Pure, Main, Complex_Main, HOLCF,
IFOL, FOL, ZF, ZFC etc. Regular Isabelle applications should not
claim any global theory names.

document_theories names specifies theories from other sessions that
should be included in the generated document source directory. These
theories need to be explicit imports in the current session, or implicit
imports from the underlying hierarchy of parent sessions. The gener-
ated session.tex file is not affected: the session’s LATEX setup needs
to \input{. . .} generated .tex files separately.

document_files (in base_dir) files lists source files for document prepa-
ration, typically .tex and .sty for LATEX. Only these explicitly given
files are copied from the base directory to the document output direc-
tory, before formal document processing is started (see also §3.3). The
local path structure of the files is preserved, which allows to reconstruct
the original directory hierarchy of base_dir. The default base_dir is
document within the session root directory.

export_files (in target_dir) [number] patterns specifies theory exports
that may get written to the file-system, e.g. via isabelle build with
option -e (§2.3). The target_dir specification is relative to the session
root directory; its default is export. Exports are selected via patterns
as in isabelle export (§2.5). The number given in brackets (default:
0) specifies the prefix of elements that should be removed from each
name: it allows to reduce the resulting directory hierarchy at the danger
of overwriting files due to loss of uniqueness.

export_classpath patterns specifies export artifacts that should be in-
cluded into the local Java/Scala classpath of this session context.
This is only relevant for tools that allow dynamic loading of ser-
vice classes (§5.2), while most other Isabelle/Scala tools require global
configuration during system startup. An empty list of patterns de-
faults to "*:classpath/*.jar", which fits to the naming convention of
JAR modules produced by the Isabelle/Isar command scala_build_
generated_files [5].

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 20

Examples

See ~~/src/HOL/ROOT for a diversity of practically relevant situations, al-
though it uses relatively complex quasi-hierarchic naming conventions like
HOL-SPARK, HOL-SPARK-Examples. An alternative is to use unqualified names
that are relatively long and descriptive, as in the Archive of Formal Proofs
(AFP, https://isa-afp.org), for example.

2.2 System build options
See ~~/etc/options for the main defaults provided by the Isabelle distri-
bution. Isabelle/jEdit [6] includes a simple editing mode isabelle-options
for this file-format.
The following options are particularly relevant to build Isabelle sessions, in
particular with document preparation (chapter 3).

• browser_info controls output of HTML browser info, see also §3.1.

• document controls document output for a particular session or the-
ory; document=pdf or document=true means enabled, document="" or
document=false means disabled (especially for particular theories).

• document_output specifies an alternative directory for generated out-
put of the document preparation system; the default is within the
ISABELLE_BROWSER_INFO hierarchy as explained in §3.1. See also
isabelle mkroot, which generates a default configuration with out-
put readily available to the author of the document.

• document_echo informs about document file names during session pre-
sentation.

• document_variants specifies document variants as a colon-separated
list of name=tags entries. The default name is document, without
additional tags.
Tags are specified as a comma separated list of modifier/name pairs and
tell LATEX how to interpret certain Isabelle command regions: “+foo”
(or just “foo”) means to keep, “-foo” to drop, and “/foo” to fold text
tagged as foo. The builtin default is equivalent to the tag specification
“+document,+theory,+proof,+ML,+visible,-invisible,+important,+unimportant”;
see also the LATEX macros \isakeeptag, \isadroptag, and
\isafoldtag, in ~~/lib/texinputs/isabelle.sty.

https://isa-afp.org

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 21

In contrast, document_variants=document:outline=/proof,/ML in-
dicates two documents: the one called document with default tags, and
the other called outline where proofs and ML sections are folded.
Document variant names are just a matter of conventions. It is also
possible to use different document variant names (without tags) for
different document root entries, see also §3.3.

• document_tags specifies alternative command tags as a comma-
separated list of items: either “command%tag” for a specific command,
or “%tag” as default for all other commands. This is occasionally useful
to control the global visibility of commands via session options (e.g. in
ROOT).

• document_comment_latex enables regular LATEX comment.sty, instead
of the historic version for plain TEX (default). The latter is much faster,
but in conflict with LATEX classes like Dagstuhl LIPIcs1.

• document_bibliography explicitly enables the use of bibtex; the de-
fault is to check the presence of root.bib, but it could have a different
name.

• document_heading_prefix specifies a prefix for the LATEX macro
names generated from Isar commands like chapter, section etc. The
default is isamarkup, e.g. section becomes \isamarkupsection.

• threads determines the number of worker threads for parallel checking
of theories and proofs. The default 0 means that a sensible value is
guessed from the underlying hardware. This sometimes requires man-
ual adjustment (on the command-line or within personal settings or
preferences, not within a session ROOT).

• condition specifies a comma-separated list of process environment
variables (or Isabelle settings) that are required for the subsequent
theories to be processed. Conditions are considered “true” if the cor-
responding environment value is defined and non-empty.

• timeout and timeout_scale specify a real wall-clock timeout for the
session as a whole: the two values are multiplied and taken as the num-
ber of seconds. Typically, timeout is given for individual sessions, and
timeout_scale as global adjustment to overall hardware performance.

1https://github.com/dagstuhl-publishing/styles

https://github.com/dagstuhl-publishing/styles

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 22

The timer is controlled outside the ML process by the JVM that runs
Isabelle/Scala. Thus it is relatively reliable in canceling processes that
get out of control, even if there is a deadlock without CPU time usage.

• profiling specifies a mode for global ML profiling. Possible values are
the empty string (disabled), time for profile_time and allocations
for profile_allocations. Results appear near the bottom of the
session log file.

• system_log specifies an optional log file for low-level messages pro-
duced by Output.system_message in Isabelle/ML; the standard value
“-” refers to console progress of the build job.

• system_heaps determines the directories for session heap images:
$ISABELLE_HEAPS is the user directory and $ISABELLE_HEAPS_SYSTEM
the system directory (usually within the Isabelle application). For
system_heaps=false, heaps are stored in the user directory and may
be loaded from both directories. For system_heaps=true, store and
load happens only in the system directory.

The isabelle options tool prints Isabelle system options. Its command-
line usage is:

Usage: isabelle options [OPTIONS] [MORE_OPTIONS ...]

Options are:
-b include $ISABELLE_BUILD_OPTIONS
-g OPTION get value of OPTION
-l list options
-t TAGS restrict list to given tags (comma-separated)
-x FILE export options to FILE in YXML format

Report Isabelle system options, augmented by MORE_OPTIONS given as
arguments NAME=VAL or NAME.

The command line arguments provide additional system options of the form
name=value or name for Boolean options.
Option -b augments the implicit environment of system options by the ones
of ISABELLE_BUILD_OPTIONS, cf. §2.3.
Option -g prints the value of the given option. Option -l lists all options
with their declaration and current value. Option -t restricts the listing to
given tags (as comma-separated list), e.g. -t build,document.
Option -x specifies a file to export the result in YXML format, instead of
printing it in human-readable form.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 23

2.3 Invoking the build process
The isabelle build tool invokes the build process for Isabelle sessions.
It manages dependencies between sessions, related sources of theories and
auxiliary files, and target heap images. Accordingly, it runs instances of the
prover process with optional document preparation. Its command-line usage
is:2

Usage: isabelle build [OPTIONS] [SESSIONS ...]

Options are:
-A ROOT include AFP with given root directory (":" for $AFP_BASE)
-B NAME include session NAME and all descendants
-D DIR include session directory and select its sessions
-H HOSTS additional cluster host specifications of the form

NAMES:PARAMETERS (separated by commas)
-N cyclic shuffling of NUMA CPU nodes (performance tuning)
-P DIR enable HTML/PDF presentation in directory (":" for

default)
-R refer to requirements of selected sessions
-S soft build: only observe changes of sources, not heap

images
-X NAME exclude sessions from group NAME and all descendants
-a select all sessions
-b build heap images
-c clean build
-d DIR include session directory
-e export files from session specification into file-system
-f fresh build
-g NAME select session group NAME
-j INT maximum number of parallel jobs

(default: 1 for local build, 0 for build cluster)
-l list session source files
-n no build -- take existing session build databases
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-v verbose
-x NAME exclude session NAME and all descendants

Build and manage Isabelle sessions: ML heaps, session databases, documents.

Parameters for cluster host specifications (-H), apart from system
options:

...

Notable system options: see "isabelle options -l -t build"

2Isabelle/Scala provides the same functionality via isabelle.Build.build.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 24

Notable system settings:
ISABELLE_TOOL_JAVA_OPTIONS="..."
ISABELLE_BUILD_OPTIONS="..."

ML_PLATFORM="..."
ML_HOME="..."
ML_SYSTEM="..."
ML_OPTIONS="..."

Isabelle sessions are defined via session ROOT files as described in (§2.1).
The totality of sessions is determined by collecting such specifications from
all Isabelle component directories (§1.1.3), augmented by more directories
given via options -d DIR on the command line. Each such directory may
contain a session ROOT file with several session specifications.
Any session root directory may refer recursively to further directories of the
same kind, by listing them in a catalog file ROOTS line-by-line. This helps to
organize large collections of session specifications, or to make -d command
line options persistent (e.g. in $ISABELLE_HOME_USER/ROOTS).

The subset of sessions to be managed is determined via individual SESSIONS
given as command-line arguments, or session groups that are given via one or
more options -g NAME. Option -a selects all sessions. The build tool takes
session dependencies into account: the set of selected sessions is completed
by including all ancestors.

One or more options -B NAME specify base sessions to be included (all
descendants wrt. the session parent or import graph).

One or more options -x NAME specify sessions to be excluded (all descen-
dants wrt. the session parent or import graph). Option -X is analogous to
this, but excluded sessions are specified by session group membership.

Option -R reverses the selection in the sense that it refers to its requirements:
all ancestor sessions excluding the original selection. This allows to prepare
the stage for some build process with different options, before running the
main build itself (without option -R).

Option -D is similar to -d, but selects all sessions that are defined in the
given directories.

Option -S indicates a “soft build”: the selection is restricted to those sessions
that have changed sources (according to actually imported theories). The
status of heap images is ignored.

The build process depends on additional options (§2.2) that are passed to the
prover eventually. The settings variable ISABELLE_BUILD_OPTIONS allows to

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 25

provide additional defaults, e.g. ISABELLE_BUILD_OPTIONS="document=pdf
threads=4". Moreover, the environment of system build options may be
augmented on the command line via -o name=value or -o name, which ab-
breviates -o name=true for Boolean or string options. Multiple occurrences
of -o on the command-line are applied in the given order.
Option -P enables PDF/HTML presentation in the given direc-
tory, where “-P:” refers to the default ISABELLE_BROWSER_INFO (or
ISABELLE_BROWSER_INFO_SYSTEM). This applies only to explicitly selected
sessions; note that option -R allows to select all requirements separately.
Option -b ensures that heap images are produced for all selected sessions.
By default, images are only saved for inner nodes of the hierarchy of sessions,
as required for other sessions to continue later on.
Option -c cleans the selected sessions (all descendants wrt. the session parent
or import graph) before performing the specified build operation.
Option -e executes the export_files directives from the ROOT specification
of all explicitly selected sessions: the status of the session build database needs
to be OK, but the session could have been built earlier. Using export_files,
a session may serve as abstract interface for add-on build artefacts, but these
are only materialized on explicit request: without option -e there is no effect
on the physical file-system yet.
Option -f forces a fresh build of all selected sessions and their requirements.
Option -n omits the actual build process after the preparatory stage (includ-
ing optional cleanup). The overall return code always the status of the set
of selected sessions. Add-on builds (like presentation) are run for successful
sessions, i.e. already finished ones.
Option -j specifies the maximum number of parallel build jobs (prover pro-
cesses). Each prover process is subject to a separate limit of parallel worker
threads, cf. system option threads. The default is 1 for a local build, and 0
for a cluster build (see option -H below).
Option -N enables cyclic shuffling of NUMA CPU nodes. This may help
performance tuning on Linux servers with separate CPU/memory modules.
Option -v increases the general level of verbosity.
Option -l lists the source files that contribute to a session.
Option -H augments the cluster hosts to be used in this build process.
Each -H option accepts multiple host or cluster names (separated by com-
mas), which all share the same (optional) parameters or system options.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 26

Multiple -H options may be given to specify further hosts (with differ-
ent parameters). For example: -H host1,host2:jobs=2,threads=4 -H
host3:jobs=4,threads=6.
The syntax for host parameters follows Isabelle outer syntax, notably with
double-quoted string literals. On the command-line, this may require extra
single quotes or escapes. For example: -H ’host4:dirs="..."’.
The system registry (§1.5) may define host and cluster names in its tables
host and cluster, respectively. A name in option -H without prefix refers
to the registry table host: each entry consists of an optional hostname and
further options. A name with the prefix “cluster.” refers to the table
cluster: each entry provides hosts, an array of names for entries of the table
host as above, and additional options that apply to all hosts simultaneously.
The local host only participates in cluster build, if an explicit option -j > 0 is
given. The default is 0, which means that isabelle build -H will initialize
the build queue and oversee remote workers, but not run any Isabelle sessions
on its own account.
The presence of at least one -H option changes the mode of opera-
tion of isabelle build substantially. It uses a shared PostgreSQL
database server, which needs to be accessible from each node via local sys-
tem options such as build_database_server, build_database_host, or
build_database_ssh_host. Remote host connections are managed via reg-
ular SSH configuration, see also $HOME/.ssh/config on each node.

Examples

Build a specific logic image:

isabelle build -b HOLCF

Build the main group of logic images:

isabelle build -b -g main

Build all descendants (and requirements) of FOL and ZF:

isabelle build -B FOL -B ZF

Build all sessions where sources have changed (ignoring heaps):

isabelle build -a -S

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 27

Provide a general overview of the status of all Isabelle sessions, without
building anything:

isabelle build -a -n -v

Build all sessions with HTML browser info and PDF document preparation:

isabelle build -a -o browser_info -o document

Build all sessions with a maximum of 8 parallel prover processes and 4 worker
threads each (on a machine with many cores):

isabelle build -a -j8 -o threads=4

Build some session images with cleanup of their descendants, while retaining
their ancestry:

isabelle build -b -c HOL-Library HOL-Algebra

HTML/PDF presentation for sessions that happen to be properly built al-
ready, without rebuilding anything except the missing browser info:

isabelle build -a -n -o browser_info

Clean all sessions without building anything:

isabelle build -a -n -c

Build all sessions from some other directory hierarchy, according to the set-
tings variable AFP that happens to be defined inside the Isabelle environment:

isabelle build -D ’$AFP’

Inform about the status of all sessions required for AFP, without building
anything yet:

isabelle build -D ’$AFP’ -R -v -n

Run a distributed build on 3 cluster hosts (local, host1, host2):

isabelle build -a -j2 -o threads=8 \
-H host1:jobs=2,threads=8
-H host2:jobs=4:threads=4,numa,shared

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 28

Use build hosts and cluster specifications:

isabelle build -H a -H b -H cluster.xy

The above requires a $ISABELLE_HOME_USER/etc/registry.toml file like
this:

host.a = { hostname = "host-a.acme.org", jobs = 2 }
host.b = { hostname = "host-b.acme.org", jobs = 2 }

host.x = { hostname = "server1.example.com" }
host.y = { hostname = "server2.example.com" }
cluster.xy = { hosts = ["x", "y"], jobs = 4 }

2.4 Print messages from session build
database

The isabelle build_log tool prints prover messages from the build
database of the given session. Its command-line usage is:

Usage: isabelle build_log [OPTIONS] [SESSIONS ...]

Options are:
-H REGEX filter messages by matching against head
-M REGEX filter messages by matching against body
-T NAME restrict to given theories (multiple options possible)
-U output Unicode symbols
-m MARGIN margin for pretty printing (default: 76.0)
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-v print all messages, including information etc.

Print messages from the session build database of the given sessions,
without any checks against current sources nor session structure:

results
from old sessions or failed builds can be printed as well.

Multiple options -H and -M are conjunctive: all given patterns need to
match. Patterns match any substring, but ^ or $ may be used to match the
start or end explicitly.

The specified session databases are taken as is, with formal checking against
current sources: There is no implicit build process involved, so it is possible

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 29

to retrieve error messages from a failed session as well. The order of messages
follows the source positions of source files; thus the result is mostly determin-
istic, independent of the somewhat erratic evaluation of parallel processing.

Option -o allows to change system options, as in isabelle build (§2.3).
This may affect the storage space for the build database, notably via
system_heaps, or build_database_server and its relatives.

Option -T restricts output to given theories: multiple entries are possible by
repeating this option on the command-line. The default is to refer to all
theories used in the original session build process.

Options -m and -U modify pretty printing and output of Isabelle symbols.
The default is for an old-fashioned ASCII terminal at 80 characters per line
(76 + 4 characters to prefix warnings or errors).

Option -v prints all messages from the session database that are normally
inlined into the source text, including information messages etc.

Options -H and -M filter messages according to their header or body con-
tent, respectively. The header follows a very basic format that makes it
easy to match message kinds (e.g. Warning or Error) and file names (e.g.
src/HOL/Nat.thy). The body is usually pretty-printed, but for matching it
is treated like one long line: blocks are ignored and breaks are turned into
plain spaces (according to their formal width).
The syntax for patters follows regular expressions of the Java platform.3

Examples

Print messages from theory HOL.Nat of session HOL, using Unicode rendering
of Isabelle symbols and a margin of 100 characters:

isabelle build_log -T HOL.Nat -U -m 100 HOL

Print warnings about ambiguous input (inner syntax) of session
HOL-Library, which is built beforehand:

isabelle build HOL-Library
isabelle build_log -H "Warning" -M "Ambiguous input" HOL-Library

Print all errors from all sessions, e.g. from a partial build of Isabelle/AFP:
isabelle build_log -H "Error" $(isabelle sessions -a -d AFP/thys)

3https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/regex/
Pattern.html

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/regex/Pattern.html

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 30

2.5 Retrieve theory exports
The isabelle export tool retrieves theory exports from the session
database. Its command-line usage is:

Usage: isabelle export [OPTIONS] SESSION

Options are:
-O DIR output directory for exported files (default: "export")
-d DIR include session directory
-l list exports
-n no build of session
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-p NUM prune path of exported files by NUM elements
-x PATTERN extract files matching pattern (e.g. "*:**" for all)

List or export theory exports for SESSION: named blobs produced by
isabelle build. Option -l or -x is required; option -x may be repeated.

The PATTERN language resembles glob patterns in the shell, with ? and *
(both excluding ":" and "/"), ** (excluding ":"), and [abc] or [^abc],
and variants {pattern1,pattern2,pattern3}.

The specified session is updated via isabelle build (§2.3), with the same
options -d, -o. The option -n suppresses the implicit build process: it means
that a potentially outdated session database is used!

Option -l lists all stored exports, with compound names theory:name.

Option -x extracts stored exports whose compound name matches the given
pattern. Note that wild cards “?” and “*” do not match the separators
“:” and “/”; the wild card ** matches over directory name hierarchies sepa-
rated by “/”. Thus the pattern “*:**” matches all theory exports. Multiple
options -x refer to the union of all specified patterns.
Option -O specifies an alternative output directory for option -x: the default
is export within the current directory. Each theory creates its own sub-
directory hierarchy, using the session-qualified theory name.
Option -p specifies the number of elements that should be pruned from each
name: it allows to reduce the resulting directory hierarchy at the danger of
overwriting files due to loss of uniqueness.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 31

2.6 Dump PIDE session database
The isabelle dump tool dumps information from the cumulative PIDE ses-
sion database (which is processed on the spot). Its command-line usage is:

Usage: isabelle dump [OPTIONS] [SESSIONS ...]

Options are:
-A NAMES dump named aspects (default: ...)
-B NAME include session NAME and all descendants
-D DIR include session directory and select its sessions
-O DIR output directory for dumped files (default: "dump")
-R refer to requirements of selected sessions
-X NAME exclude sessions from group NAME and all descendants
-a select all sessions
-b NAME base logic image (default "Pure")
-d DIR include session directory
-g NAME select session group NAME
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-v verbose
-x NAME exclude session NAME and all descendants

Dump cumulative PIDE session database, with the following aspects:
...

Options -B, -D, -R, -X, -a, -d, -g, -x and the remaining command-line ar-
guments specify sessions as in isabelle build (§2.3): the cumulative PIDE
database of all their loaded theories is dumped to the output directory of
option -O (default: dump in the current directory).

Option -b specifies an optional base logic image, for improved scalability
of the PIDE session. Its theories are only processed if it is included in the
overall session selection.

Option -o overrides Isabelle system options as for isabelle build (§2.3).

Option -v increases the general level of verbosity.

Option -A specifies named aspects of the dump, as a comma-separated list.
The default is to dump all known aspects, as given in the command-line usage
of the tool. The underlying Isabelle/Scala operation isabelle.Dump.dump
takes aspects as user-defined operations on the final PIDE state and docu-
ment version. This allows to imitate Prover IDE rendering under program
control.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 32

Examples

Dump all Isabelle/ZF sessions (which are rather small):

isabelle dump -v -B ZF

Dump the quite substantial HOL-Analysis session, with full bootstrap from
Isabelle/Pure:

isabelle dump -v HOL-Analysis

Dump all sessions connected to HOL-Analysis, using main Isabelle/HOL as
basis:

isabelle dump -v -b HOL -B HOL-Analysis

This results in uniform PIDE markup for everything, except for the
Isabelle/Pure bootstrap process itself. Producing that on the spot requires
several GB of heap space, both for the Isabelle/Scala and Isabelle/ML process
(in 64bit mode). Here are some relevant settings (§1.1.1) for such ambitious
applications:

ISABELLE_TOOL_JAVA_OPTIONS="-Xms4g -Xmx32g -Xss16m"
ML_OPTIONS="--minheap 4G --maxheap 32G"

2.7 Update theory sources based on PIDE
markup

The isabelle update tool updates theory sources based on markup that is
produced by the regular isabelle build process §2.3). Its command-line
usage is:

Usage: isabelle update [OPTIONS] [SESSIONS ...]

Options are:
-B NAME include session NAME and all descendants
-D DIR include session directory and select its sessions
-R refer to requirements of selected sessions
-X NAME exclude sessions from group NAME and all descendants
-a select all sessions
-b build heap images
-c clean build

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 33

-d DIR include session directory
-f fresh build
-g NAME select session group NAME
-j INT maximum number of parallel jobs (default 1)
-l NAME additional base logic
-n no build -- take existing session build databases
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-u OPT override "update" option for selected sessions
-v verbose
-x NAME exclude session NAME and all descendants

Update theory sources based on PIDE markup produced by "isabelle build".

Most options are the same as for isabelle build (§2.3).

Option -l specifies one or more base logics: these sessions and their ancestors
are excluded from the update.

Option -u refers to specific update options, by relying on naming convention:
“-u OPT” is a shortcut for “-o update_OPT”.

The following update options are supported:

• update_inner_syntax_cartouches to update inner syntax (types,
terms, etc.) to use cartouches, instead of double-quoted strings or
atomic identifiers. For example, “lemma "x = x"” is replaced by
“lemma ‹x = x›”, and “assume A” is replaced by “assume ‹A›”.

• update_mixfix_cartouches to update mixfix templates to use car-
touches instead of double-quoted strings. For example, “(infixl "+"
65)” is replaced by “(infixl ‹+› 65)”.

• update_control_cartouches to update antiquotations to use the com-
pact form with control symbol and cartouche argument. For example,
“@{term "x + y"}” is replaced by “term ‹x + y›” (the control symbol
is literally \<^term>.)

• update_path_cartouches to update file-system paths to use car-
touches: this depends on language markup provided by semantic pro-
cessing of parsed input.

• update_cite to update LATEX \cite commands and old-style @{cite
"name"} document antiquotations.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 34

It is also possible to produce custom updates in Isabelle/ML, by reporting
Markup.update with the precise source position and a replacement text. This
operation should be made conditional on specific system options, similar
to the ones above. Searching the above option names in ML sources of
$ISABELLE_HOME/src/Pure provides some examples.
Updates can be in conflict by producing nested or overlapping edits: this may
require to run isabelle update multiple times.

Examples

Update some cartouche notation in all theory sources required for session
HOL-Analysis (and ancestors):

isabelle update -u mixfix_cartouches HOL-Analysis

Update the same for all application sessions based on HOL-Analysis, but do
not change the underlying HOL (and Pure) session:

isabelle update -u mixfix_cartouches -l HOL -B HOL-Analysis

Update all sessions that happen to be properly built beforehand:

isabelle update -u mixfix_cartouches -n -a

2.8 Explore sessions structure
The isabelle sessions tool explores the sessions structure. Its command-
line usage is:

Usage: isabelle sessions [OPTIONS] [SESSIONS ...]

Options are:
-B NAME include session NAME and all descendants
-D DIR include session directory and select its sessions
-R refer to requirements of selected sessions
-X NAME exclude sessions from group NAME and all descendants
-a select all sessions
-b follow session build dependencies (default: source

imports)
-d DIR include session directory
-g NAME select session group NAME

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 35

-x NAME exclude session NAME and all descendants

Explore the structure of Isabelle sessions and print result names in
topological order (on stdout).

Arguments and options for session selection resemble isabelle build (§2.3).

Examples

All sessions of the Isabelle distribution:

isabelle sessions -a

Sessions that are imported by ZF:

isabelle sessions ZF

Sessions that are required to build ZF:

isabelle sessions -b ZF

Sessions that are based on ZF (and imported by it):

isabelle sessions -B ZF

All sessions of Isabelle/AFP (based in directory AFP):

isabelle sessions -D AFP/thys

Sessions required by Isabelle/AFP (based in directory AFP):

isabelle sessions -R -D AFP/thys

2.9 Synchronize source repositories and ses-
sion images for Isabelle and AFP

The isabelle sync tool synchronizes a local Isabelle and AFP source repos-
itory, possibly with prebuilt .jar files and session images. Its command-line
usage is:

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 36

Usage: isabelle sync [OPTIONS] TARGET

Options are:
-A ROOT include AFP with given root directory (":" for $AFP_BASE)
-H purge heaps directory on target
-I NAME include session heap image and build database

(based on accidental local state)
-J preserve *.jar files
-T thorough treatment of file content and directory times
-a REV explicit AFP revision (default: state of working directory)
-s HOST SSH host name for remote target (default: local)
-u USER explicit SSH user name
-n no changes: dry-run
-p PORT explicit SSH port
-r REV explicit revision (default: state of working directory)
-v verbose

Synchronize Isabelle + AFP repositories, based on "isabelle hg_sync".

The approach is to apply isabelle hg_sync (see §7.7) on the underly-
ing Isabelle repository, and an optional AFP repository. Consequently, the
Isabelle installation needs to be a Mercurial repository clone: a regular down-
load of the Isabelle distribution is not sufficient!
On the target side, AFP is placed into ISABELLE_HOME as immediate sub-
directory with the literal name AFP; thus it can be easily included elsewhere,
e.g. isabelle build -d ’~~/AFP’ on the remote side.

Options -T, -n, -p, -s, -u, -v are the same as the underlying
isabelle hg_sync.

Options -r and -a are the same as option -r for isabelle hg_sync, but for
the Isabelle and AFP repositories, respectively. The AFP version is only used
if a corresponding repository is given via option -A, either with explicit root
directory, or as -A: to refer to $AFP_BASE (this assumes AFP as component
of the local Isabelle installation). If no AFP repository is given, an existing
AFP directory on the target remains unchanged.

Option -J uploads existing .jar files from the working direc-
tory, which are usually Isabelle/Scala/Java modules under control of
isabelle scala_build via etc/build.props (see also §5.2). Thus the
dependency management is accurate: bad uploads will be rebuilt eventually
(or ignored). This might fail for very old Isabelle versions, when going into
the past via option -r: here it is better to omit option -J and thus purge
.jar files on the target (because they do not belong to the repository).

Option -I uploads a collection of session images. The set of -I options speci-

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 37

fies the end-points in the session build graph, including all required ancestors.
The result collection is uploaded using the underlying rsync policies, so un-
changed images are not sent again. Session images are assembled within the
target heaps directory: this scheme fits together with isabelle build -o
system_heaps. Images are taken as-is from the local Isabelle installation,
regardless of option -r. Upload of bad images could waste time and space,
but running e.g. isabelle build on the target will check dependencies
accurately and rebuild outdated images on demand.

Option -H tells the underlying rsync process to purge the heaps directory
on the target, before uploading new images via option -I. The default is to
work monotonically: old material that is not overwritten remains unchanged.
Over time, this may lead to unused garbage, due to changes in session names
or the Poly/ML version. Option -H helps to avoid wasting file-system space.

Examples

For quick testing of Isabelle + AFP on a remote machine, upload changed
sources, jars, and local sessions images for HOL:

isabelle sync -A: -I HOL -J -s testmachine test/isabelle_afp

Assuming that the local HOL hierarchy has been up-to-date, and the local
and remote ML platforms coincide, a remote isabelle build will proceed
without building HOL again.

Here is a variation for extra-clean testing of Isabelle + AFP: no option -J,
but option -T to disable the default “quick check” of rsync (which only
inspects file sizes and date stamps); existing heaps are deleted:

isabelle sync -A: -T -H -s testmachine test/isabelle_afp

2.10 Remote build management
Building large collections of Isabelle session (e.g., the AFP) is an expensive
operation that might not be feasible on a local device, so powerful remote
hardware is necessary to be able to test changes quickly. In a multi-user
environment, these hardware resources must be managed such that important
tasks can be completed as soon as possible, and automated tasks run in the
background when necessary.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 38

2.10.1 Build manager server
The isabelle build_manager tool starts a server process that manages a
queue of tasks, runs build jobs, and serves a web view that displays the
results. It consists of several threads:

• poller : listens to repository updates and queues automatic tasks.

• timer : queues periodic tasks at specific points in time.

• runner : starts jobs for feasible tasks with the highest priority
whenever possible. Jobs run exclusively on their resources, ei-
ther on the cluster specified via build_manager_cluster (the
connection to the build_master host must be specified via
build_manager_cluster_ssh connection options), or on a single re-
mote host (under the identifier given by build_manager_identifier).

• web_server : serves the web page. If the web address is not reach-
able under the SSH hostname of the server, it must be set via
build_manager_address.

Automated tasks must be registered in a isabelle.Isabelle_CI_Jobs ser-
vice. The system option build_manager_ci_jobs controls which jobs are
executed by the Build_Manager.

The command-line usage to start the server is:

Usage: isabelle build_manager [OPTIONS]

Options are:
-A ROOT include AFP with given root directory (":" for $AFP_BASE)
-D DIR include extra component in given directory
-H HOSTS host specifications for all available hosts of the form

NAMES:PARAMETERS (separated by commas)
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-p PORT explicit web server port

Run Isabelle build manager.

Option -o has the same meaning as for isabelle build.

Option -p has the same meaning as for isabelle server.

Option -A refers to the AFP (must be a Mercurial clone).

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 39

Option -D extra Isabelle components in a Mercurial repository clone to be
considered by the poller and CI jobs.

Option -H must list all host specifications to be used in the build cluster or
as remote host.

In case a job does not complete on its own, it is terminated after a timeout
defined by the CI job, or build_manager_timeout for user-submitted tasks.

To gracefully stop the build manager, it should be sent an interrupt sig-
nal (kill -INT). This will stop all threads gracefully: Any running build is
allowed to complete before the Isabelle/Scala process terminates.

The build manager stores its persistent data (including user-submitted tasks
and build logs) in the directory given by build_manager_dir. It must be
writable by the common Unix group specified in build_manager_group. It
also needs a PostgreSQL database (via build_manager_database connection
options) for shared state. A clean database state (e.g., after a schema update)
can be restored from build logs via the isabelle build_manager_database
tool:

Usage: isabelle build_manager_database [OPTIONS]

Options are:
-A ROOT include AFP with given root directory (":" for $AFP_BASE)
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-u update reports

Restore build_manager database from log files.

Options -A and -o are the same as in isabelle build_manager.
Option -u updates Mercurial reports in the persistent storage based on the
version history (e.g., to change the diff display in the web server).

2.10.2 Submitting build tasks
The isabelle build_task tool submits user-defined build tasks by sync-
ing the local Isabelle repository to the server and queuing a task in the
shared state. Command-line options are almost identical to the regular
isabelle build, with the exception of preferences in the remote build.
For the SSH connection, the server needs to be accessible with the system
options build_manager_ssh_user, build_manager_ssh_host, etc.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 40

The database needs to be configured similarly (via build_manager_database
connection options) though the PostgreSQL server can also be configured to
trust connections of logged in users via “peer authentication”.

Examples

Clean build of the distribution:

isabelle build_task -c -a

Build all sessions in the AFP excluding the very_slow group:

isabelle build_task -A: -X slow -g AFP

2.11 Process theories within a session con-
text

The isabelle process_theories tool takes source files and theories from
existing sessions to compose an adhoc session (in a temporary directory) that
is then processed via regular isabelle build. It is also possible to output
prover messages roughly like isabelle build_log, while the theories are
being processed.

Usage: isabelle process_theories [OPTIONS] [THEORIES...]

Options are:
-D DIR explicit session directory (default: private)
-E EXPORTS write session export artifacts to file-system
-F FILE include additional session files, listed in FILE
-H REGEX filter messages by matching against head
-M REGEX filter messages by matching against body
-O output messages
-U output Unicode symbols
-d DIR include session directory
-f FILE include additional session file
-l NAME logic session name (default ISABELLE_LOGIC="HOL")
-m MARGIN margin for pretty printing (default: 76.0)
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-v verbose

Process theories within an adhoc session context.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 41

Explicit theories given as command-line arguments, not options, refer to qual-
ified theory names from existing sessions, e.g. HOL-Library.Multiset or
HOL-Examples.Seq. The session qualifiers are used to augment the adhoc
session specification by suitable entries for sessions (§2.1).

Options -f and -F specify source files for the adhoc session directory (mul-
tiple occurrences are possible): -f is for literal file names, and -F is for files
that contain a list of further files (one per line).
Option -D indicates an explicit session directory, instead of a private tempo-
rary one. This directory must not be used by another session already.
If option -D is not given, then all source files are copied to the adhoc session
directory, without any subdirectory structure. Files with extension .thy are
treated as theory files: their base names are appended to the overall list of
theories, and thus loaded into the adhoc session, too.

Option -E writes session export artifacts to the local file-system: it is a com-
bination of option -e from isabelle build, together export_files from
session ROOT declarations (§2.1). The declaration syntax allows to spec-
ify an explicit export directory, which is here understood as relative to the
current working directory. The default directory is “export”.

Option -l specifies the parent logic session, which is produced on the spot
using isabelle build. Options -d, -o, -v work as in isabelle build.
Option -O enables output of prover messages. Options -H, -M, -U, -m work
as in isabelle build_log.

Examples

Process a theory from a different session in the context of the default logic
(HOL):

isabelle process_theories HOL-Library.Multiset

Process a theory with prover output enabled (using Unicode symbols):

isabelle process_theories -U -O HOL-Library.Multiset

Process a theory with prover output enabled, including proof states:

isabelle process_theories -U -O -o show_states HOL-Library.Multiset

Process a self-contained theory file from the Isabelle distribution, outside of
its original session context:

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 42

isabelle process_theories -f ’~~/src/HOL/Examples/Seq.thy’

Process a theory with session export artifacts, stemming from the
Isabelle/HOL code generator (result directory “code”):

isabelle process_theories -E ’[1] "*:code/**"’ HOL-Decision_Procs.Cooper

Chapter 3

Presenting theories

Isabelle provides several ways to present the outcome of formal developments,
including WWW-based browsable libraries or actual printable documents.
Presentation is centered around the concept of sessions (chapter 2). The
global session structure is that of a tree, with Isabelle Pure at its root, further
object-logics derived (e.g. HOLCF from HOL, and HOL from Pure), and
application sessions further on in the hierarchy.
The command-line tools isabelle mkroot and isabelle build provide the
primary means for managing Isabelle sessions, including options for presen-
tation: “document=pdf” generates PDF output from the theory session, and
“document_output=dir” emits a copy of the document sources with the PDF
into the given directory (relative to the session directory).
Alternatively, isabelle document may be used to turn the generated LATEX
sources of a session (exports from its session build database) into PDF.

3.1 Generating HTML browser information
As a side-effect of building sessions, Isabelle is able to generate theory brows-
ing information, including HTML documents that show the theory sources
and the relationship with its ancestors and descendants. Besides the HTML
file that is generated for every theory, Isabelle stores links to all theories
of a session in an index file. As a second hierarchy, groups of sessions are
organized as chapters, with a separate index. Note that the implicit tree
structure of the session build hierarchy is not relevant for the presentation.

To generate theory browsing information for an existing session, just invoke
isabelle build with suitable options:

isabelle build -o browser_info -v -c FOL

The presentation output will appear in a sub-directory $ISABELLE_BROWSER_INFO,
according to the chapter and session name.

43

CHAPTER 3. PRESENTING THEORIES 44

Many Isabelle sessions (such as HOL-Library in ~~/src/HOL/Library) also
provide theory documents in PDF. These are prepared automatically as well
if enabled like this:

isabelle build -o browser_info -o document -v -c HOL-Library

Enabling both browser info and document preparation simultaneously causes
an appropriate “document” link to be included in the HTML index. Docu-
ments may be generated independently of browser information as well, see
§3.3 for further details.

The theory browsing information is stored in the directory determined by
the ISABELLE_BROWSER_INFO setting, with sub-directory structure according
to the chapter and session name. In order to present Isabelle applications on
the web, the corresponding subdirectory from ISABELLE_BROWSER_INFO can
be put on a WWW server.

3.2 Creating session root directories
The isabelle mkroot tool configures a given directory as session root, with
some ROOT file and optional document source directory. Its usage is:

Usage: isabelle mkroot [OPTIONS] [DIRECTORY]

Options are:
-A LATEX provide author in LaTeX notation (default: user name)
-I init Mercurial repository and add generated files
-T LATEX provide title in LaTeX notation (default: session name)
-n NAME alternative session name (default: directory base name)
-q quiet mode: less verbosity

Create session root directory (default: current directory).

The results are placed in the given directory dir, which refers to the current
directory by default. The isabelle mkroot tool is conservative in the sense
that it does not overwrite existing files or directories. Earlier attempts to
generate a session root need to be deleted manually.
The generated session template will be accompanied by a formal document,
with DIRECTORY /document/root.tex as its LATEX entry point (see also
chapter 3).
Options -T and -A specify the document title and author explicitly, using
LATEX source notation.

CHAPTER 3. PRESENTING THEORIES 45

Option -I initializes a Mercurial repository in the target directory, and adds
all generated files (without commit).
Option -n specifies an alternative session name; otherwise the base name of
the given directory is used.
Option -q reduces verbosity.

The implicit Isabelle settings variable ISABELLE_LOGIC specifies the parent
session.

Examples

Produce session Test within a separate directory of the same name:

isabelle mkroot -q Test && isabelle build -D Test

Upgrade the current directory into a session ROOT with document prepara-
tion, and build it:

isabelle mkroot -q && isabelle build -D .

3.3 Preparing Isabelle session documents
The isabelle document tool prepares logic session documents. Its usage is:

Usage: isabelle document [OPTIONS] SESSION

Options are:
-O DIR output directory for LaTeX sources and resulting PDF
-P DIR output directory for resulting PDF
-S DIR output directory for LaTeX sources
-V verbose latex
-d DIR include session directory
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-v verbose build

Prepare the theory document of a session.

Generated LATEX sources are taken from the session build database:
isabelle build is invoked beforehand to ensure that it is up-to-date. Fur-
ther files are generated on the spot, notably essential Isabelle style files, and
session.tex to input all theory sources from the session (excluding imports
from other sessions).

CHAPTER 3. PRESENTING THEORIES 46

Options -d, -o, -v have the same meaning as for isabelle build.

Option -V prints full output of LATEX tools.

Option -O dir specifies the output directory for generated LATEX sources and
the result PDF file. Options -P and -S only refer to the PDF and sources,
respectively.
For example, for output directory “output” and the default document variant
“document”, the generated document sources are placed into the subdirectory
output/document/ and the resulting PDF into output/document.pdf.

Isabelle is usually smart enough to create the PDF from the given root.tex
and optional root.bib (bibliography) and root.idx (index) using standard
LATEX tools. Actual command-lines are given by settings ISABELLE_LUALATEX
(or ISABELLE_PDFLATEX), ISABELLE_BIBTEX, ISABELLE_MAKEINDEX: these
variables are used without quoting in shell scripts, and thus may contain
additional options.
The system option document_build specifies an alternative build engine, e.g.
within the session ROOT file as “options [document_build = pdflatex]”.
The following standard engines are available:

• lualatex (default) uses the shell command $ISABELLE_LUALATEX on
the main root.tex file, with further runs of $ISABELLE_BIBTEX and
$ISABELLE_MAKEINDEX as required.

• pdflatex uses $ISABELLE_PDFLATEX instead of $ISABELLE_LUALATEX,
and the other tools as above.

• build invokes an executable script of the same name in a private di-
rectory containing all document_files and other generated document
sources. The script is invoked as “./build pdf name” for the docu-
ment variant name; it needs to produce a corresponding name.pdf file
by arbitrary means on its own.

Further engines can be defined by add-on components in Isabelle/Scala
(§5.2), providing a service class derived from isabelle.Document_Build.
Engine.

Examples

Produce the document from session FOL with full verbosity, and a copy in
the current directory (subdirectory document and file document.pdf):
isabelle document -v -V -O. FOL

CHAPTER 3. PRESENTING THEORIES 47

3.4 Full-text search for formal theory content
The session information of a regular isabelle build can also be used to
generate a search index for full-text search over formal theory content. To
that end, the Find_Facts module integrates Apache Solr1, a full-text search
engine, that can run embedded in a JVM process. Solr is bundled as a
separate Isabelle component, and its run-time dependencies (as specified
in SOLR_JARS) need to be added separately to the classpath of a regular
Isabelle/Scala process.

A search index can be created using the isabelle find_facts_index tool,
which has options similar to the regular isabelle build. User data such
as search indexes is stored in FIND_FACTS_HOME_USER. The name of the
search index can be specified via system option find_facts_database_name.
A finished search index can be packed for later use as a regular Isabelle
component using the isabelle find_facts_index_build tool, with a
.db file and etc/settings to augment FIND_FACTS_INDEXES for use by
isabelle find_facts_server.

The user interface of the search is available as web application that can be
started with the isabelle find_facts_server tool. Its usage is:

Usage: isabelle find_facts_server [OPTIONS]

Options are:
-d devel mode
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-p PORT explicit web server port
-v verbose server

Run server for Find_Facts.

This Isabelle/Scala HTTP server provides the both the front-end (imple-
mented in the Elm2 language) and REST endpoints for search queries with
JSON data.
Options -o and -v have the same meaning as in isabelle build.
Option -d re-compiles the front-end in $FIND_FACTS_HOME_USER/web on
page reload (when sources are changed).
Option -p specifies an explicit TCP port for the server socket (assigned by the
operating system per default). For public-facing servers, a common scheme

1https://solr.apache.org
2https://elm-lang.org

https://solr.apache.org
https://elm-lang.org

CHAPTER 3. PRESENTING THEORIES 48

is -p 8080 that is access-restricted via firewall rules, with a reverse proxy3

in system space (that also handles SSL) on ports 80 and 443.

3E.g. via Caddy https://caddyserver.com/docs

https://caddyserver.com/docs

Chapter 4

The Isabelle server

An Isabelle session requires at least two processes, which are both rather
heavy: Isabelle/Scala for the system infrastructure and Isabelle/ML for
the logic session (e.g. HOL). In principle, these processes can be invoked
directly on the command-line, e.g. via isabelle java, isabelle scala,
isabelle ML_process, isabelle console, but this approach is inadequate
for reactive applications that require quick responses from the prover.
In contrast, the Isabelle server exposes Isabelle/Scala as a “terminate-stay-
resident” application that manages multiple logic sessions and concurrent
tasks to use theories. This is analogous to Thy_Info.use_theories in
Isabelle/ML, with proper support for concurrent invocations.
The client/server arrangement via TCP sockets also opens possibilities for
remote Isabelle services that are accessed by local applications, e.g. via an
SSH tunnel.

4.1 Command-line tools
4.1.1 Server
The isabelle server tool manages resident server processes:

Usage: isabelle server [OPTIONS]

Options are:
-L FILE logging on FILE
-c console interaction with specified server
-l list servers (alternative operation)
-n NAME explicit server name (default: isabelle)
-p PORT explicit server port
-s assume existing server, no implicit startup
-x exit specified server (alternative operation)

Manage resident Isabelle servers.

The main operation of isabelle server is to ensure that a named server

49

CHAPTER 4. THE ISABELLE SERVER 50

is running, either by finding an already running process (according to the
central database file $ISABELLE_HOME_USER/servers.db) or by becoming
itself a new server that accepts connections on a particular TCP socket. The
server name and its address are printed as initial output line. If another
server instance is already running, the current isabelle server process
will terminate; otherwise, it keeps running as a new server process until an
explicit shutdown command is received. Further details of the server socket
protocol are explained in §4.2.
Other server management operations are invoked via options -l and -x (see
below).

Option -n specifies an alternative server name: at most one process for each
name may run, but each server instance supports multiple connections and
logic sessions.

Option -p specifies an explicit TCP port for the server socket (which is always
on localhost): the default is to let the operating system assign a free port
number.

Option -s strictly assumes that the specified server process is already run-
ning, skipping the optional server startup phase.

Option -c connects the console in/out channels after the initial check for a
suitable server process. Also note that the isabelle client tool (§4.1.2)
provides a command-line editor to interact with the server.

Option -L specifies a log file for exceptional output of internal server and
session operations.

Operation -l lists all active server processes with their connection details.

Operation -x exits the specified server process by sending it a shutdown
command.

4.1.2 Client
The isabelle client tool provides console interaction for Isabelle servers:

Usage: isabelle client [OPTIONS]

Options are:
-n NAME explicit server name
-p PORT explicit server port

Console interaction for Isabelle server (with line-editor).

CHAPTER 4. THE ISABELLE SERVER 51

This is a wrapper to isabelle server -s -c for interactive experimenta-
tion, which uses ISABELLE_LINE_EDITOR if available. The server name is
sufficient for identification, as the client can determine the connection details
from the local database of active servers.

Option -n specifies an explicit server name as in isabelle server.

Option -p specifies an explicit server port as in isabelle server.

4.1.3 Examples
Ensure that a particular server instance is running in the background:

isabelle server -n test &

The first line of output presents the connection details:1

server "test" = 127.0.0.1:4711 (password "XYZ")

List available server processes:

isabelle server -l

Connect the command-line client to the above test server:

isabelle client -n test

Interaction now works on a line-by-line basis, with commands like help or
echo. For example, some JSON values may be echoed like this:

echo 42
echo [1, 2, 3]
echo {"a": "text", "b": true, "c": 42}

Closing the connection (via CTRL-D) leaves the server running: it is possible
to reconnect again, and have multiple connections at the same time.

Exit the named server on the command-line:

isabelle server -n test -x

1This information may be used in other TCP clients, without access to Isabelle/Scala
and the underlying database of running servers.

CHAPTER 4. THE ISABELLE SERVER 52

4.2 Protocol messages
The Isabelle server listens on a regular TCP socket, using a line-oriented
protocol of structured messages. Input commands and output results (via
OK or ERROR) are strictly alternating on the toplevel, but commands may
also return a task identifier to indicate an ongoing asynchronous process
that is joined later (via FINISHED or FAILED). Asynchronous NOTE messages
may occur at any time: they are independent of the main command-result
protocol.
For example, the synchronous echo command immediately returns its argu-
ment as OK result. In contrast, the asynchronous session_build command
returns OK {"task":id} and continues in the background. It will eventually
produce FINISHED {"task":id,. . .} or FAILED {"task":id,. . .} with the fi-
nal result. Intermediately, it may emit asynchronous messages of the form
NOTE {"task":id,. . .} to inform about its progress. Due to the explicit task
identifier, the client can show these messages in the proper context, e.g. a
GUI window for this particular session build job.

Subsequently, the protocol message formats are described in further detail.

4.2.1 Byte messages
The client-server connection is a raw byte-channel for bidirectional commu-
nication, but the Isabelle server always works with messages of a particular
length. Messages are written as a single chunk that is flushed immediately.
Message boundaries are determined as follows:

• A short message consists of a single line: it is a sequence of arbitrary
bytes excluding CR (13) and LF (10), and terminated by CR-LF or
just LF.

• A long message starts with a single line consisting of decimal digits:
these are interpreted as length of the subsequent block of arbitrary
bytes. A final line-terminator (as above) may be included here, but is
not required.

Messages in JSON format (see below) always fit on a single line, due to
escaping of newline characters within string literals. This is convenient for
interactive experimentation, but it can impact performance for very long
messages. If the message byte-length is given on the preceding line, the
server can read the message more efficiently as a single block.

CHAPTER 4. THE ISABELLE SERVER 53

4.2.2 Text messages
Messages are read and written as byte streams (with byte lengths), but the
content is always interpreted as plain text in terms of the UTF-8 encoding.2

Note that line-endings and other formatting characters are invariant wrt.
UTF-8 representation of text: thus implementations are free to determine
the overall message structure before or after applying the text encoding.

4.2.3 Input and output messages
The uniform format for server input and output messages is name argument,
such that:

• name is the longest prefix consisting of ASCII letters, digits, “_”, “.”,

• the separator between name and argument is the longest possible se-
quence of ASCII blanks (it could be empty, e.g. when the argument
starts with a quote or bracket),

• argument is the rest of the message without line terminator.

Input messages are sent from the client to the server. Here the name specifies
a server command: the list of known commands may be retrieved via the help
command.

Output messages are sent from the server to the client. Here the name
specifies the server reply, which always has a specific meaning as follows:

• synchronous results: OK or ERROR

• asynchronous results: FINISHED or FAILED

• intermediate notifications: NOTE

The argument format is uniform for both input and output messages:

• empty argument (Scala type Unit)

• XML element in YXML notation (Scala type XML.Elem)

• JSON value (Scala type JSON.T)
2See also the “UTF-8 Everywhere Manifesto” https://utf8everywhere.org.

https://utf8everywhere.org

CHAPTER 4. THE ISABELLE SERVER 54

JSON values may consist of objects (records), arrays (lists), strings, numbers,
bools, or null.3 Since JSON requires explicit quotes and backslash-escapes
to represent arbitrary text, the YXML notation for XML trees (§1.6) works
better for large messages with a lot of PIDE markup.
Nonetheless, the most common commands use JSON by default: big chunks
of text (theory sources etc.) are taken from the underlying file-system and
results are pre-formatted for plain-text output, without PIDE markup infor-
mation. This is a concession to simplicity: the server imitates the appearance
of command-line tools on top of the Isabelle/PIDE infrastructure.

4.2.4 Initial password exchange
Whenever a new client opens the server socket, the initial message needs
to be its unique password as a single line, without length indication (i.e. a
“short message” in the sense of §4.2.1).
The server replies either with OK (and some information about the Isabelle
version) or by silent disconnection of what is considered an illegal connection
attempt. Note that isabelle client already presents the correct password
internally.
Server passwords are created as Universally Unique Identifier (UUID) in
Isabelle/Scala and stored in a per-user database, with restricted file-system
access only for the current user. The Isabelle/Scala server implementation is
careful to expose the password only on private output channels, and not on
a process command-line (which is accessible to other users, e.g. via the ps
command).

4.2.5 Synchronous commands
A synchronous command corresponds to regular function application in
Isabelle/Scala, with single argument and result (regular or error). Both the
argument and the result may consist of type Unit, XML.Elem, JSON.T. An
error result typically consists of a JSON object with error message and po-
tentially further result fields (this resembles exceptions in Scala).
These are the protocol exchanges for both cases of command execution:

input: command argument
(a) regular output: OK result

(b) error output: ERROR result
3See also the official specification https://www.json.org and unofficial explorations

“Parsing JSON is a Minefield” http://seriot.ch/parsing_json.php.

https://www.json.org
http://seriot.ch/parsing_json.php

CHAPTER 4. THE ISABELLE SERVER 55

4.2.6 Asynchronous commands
An asynchronous command corresponds to an ongoing process that finishes or
fails eventually, while emitting arbitrary notifications in between. Formally,
it starts as synchronous command with immediate result OK giving the task
identifier, or an immediate ERROR that indicates bad command syntax. For
a running task, the termination is indicated later by FINISHED or FAILED,
together with its ultimate result value.
These are the protocol exchanges for various cases of command task execu-
tion:

input: command argument
immediate output: OK {"task":id}

intermediate output: NOTE {"task":id,. . .}
(a) regular output: FINISHED {"task":id,. . .}

(b) error output: FAILED {"task":id,. . .}

input: command argument
immediate output: ERROR . . .

All asynchronous messages are decorated with the task identifier that was
revealed in the immediate (synchronous) result. Thus the client can invoke
further asynchronous commands and still dispatch the resulting stream of
asynchronous messages properly.
The synchronous command cancel {"task": id} tells the specified task
to terminate prematurely: usually causing a FAILED result, but this is not
guaranteed: the cancel event may come too late or the running process may
just ignore it.

4.3 Types for JSON values
In order to specify concrete JSON types for command arguments and result
messages, the following type definition language shall be used:

type_def

type
�� ��name =

����type

CHAPTER 4. THE ISABELLE SERVER 56

type

name�
�value

�any
�� ���null
�� ���bool
�� ���int
�� ���long
�� ���double
�� ���string
�� ��� [
����type]

����� {
�����

� ,
����field_type

�
�

}
����

�type ⊕
����type

�type |
����type

� (
����type)

����

�
�
�
�
�
�
�
�
�
�
�

�
�
�

field_type

name �
� ?

����
�
�

:
����type

This is a simplified variation of TypeScript interfaces.4 The meaning of these
types is specified wrt. the Isabelle/Scala implementation as follows.

4https://www.typescriptlang.org/docs/handbook/interfaces.html

https://www.typescriptlang.org/docs/handbook/interfaces.html

CHAPTER 4. THE ISABELLE SERVER 57

• A name refers to a type defined elsewhere. The environment of type
definitions is given informally: put into proper foundational order, it
needs to specify a strongly normalizing system of syntactic abbrevia-
tions; type definitions may not be recursive.

• A value in JSON notation represents the singleton type of the given
item. For example, the string "error" can be used as type for a slot
that is guaranteed to contain that constant.

• Type any is the super type of all other types: it is an untyped slot in
the specification and corresponds to Any or JSON.T in Isabelle/Scala.

• Type null is the type of the improper value null; it corresponds to type
Null in Scala and is normally not used in Isabelle/Scala.5

• Type bool is the type of the truth values true and false; it corresponds
to Boolean in Scala.

• Types int, long, double are specific versions of the generic number type,
corresponding to Int, Long, Double in Scala, but Long is limited to 53
bit precision.6

• Type string represents Unicode text; it corresponds to type String in
Scala.

• Type [t] is the array (or list) type over t; it corresponds to List[t]
in Scala. The list type is co-variant as usual (i.e. monotonic wrt. the
subtype relation).

• Object types describe the possible content of JSON records, with field
names and types. A question mark after a field name means that it is
optional. In Scala this could refer to an explicit type Option[t], e.g.
{a: int, b?: string} corresponding to a Scala case class with arguments
a: Int, b: Option[String].
Alternatively, optional fields can have a default value. If nothing else is
specified, a standard “empty value” is used for each type, i.e. 0 for the
number types, false for bool, or the empty string, array, object etc.
Object types are permissive in the sense that only the specified field
names need to conform to the given types, but unspecified fields may
be present as well.

5See also “Null References: The Billion Dollar Mistake” by Tony Hoare https://www.
infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare.

6Implementations of JSON typically standardize number to Double, which can absorb
Int faithfully, but not all of Long.

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare

CHAPTER 4. THE ISABELLE SERVER 58

• The type expression t1 ⊕ t2 only works for two object types with dis-
joint field names: it is the concatenation of the respective field_type
specifications taken together. For example: {task: string} ⊕ {ok: bool}
is the equivalent to {task: string, ok: bool}.

• The type expression t1 | t2 is the disjoint union of two types, either one
of the two cases may occur.

• Parentheses (t) merely group type expressions syntactically.

These types correspond to JSON values in an obvious manner, which is not
further described here. For example, the JSON array [1, 2, 3] conforms
to types [int], [long], [double], [any], any.
Note that JSON objects require field names to be quoted, but the type lan-
guage omits quotes for clarity. Thus the object {"a": 42, "b": "xyz"}
conforms to the type {a: int, b: string}, for example.

The absence of an argument or result is represented by the Scala type Unit:
it is written as empty text in the message argument (§4.2.3). This is not part
of the JSON language.
Server replies have name tags like OK, ERROR: these are used literally together
with type specifications to indicate the particular name with the type of its
argument, e.g. OK [string] for a regular result that is a list (JSON array) of
strings.

Here are some common type definitions, for use in particular specifications
of command arguments and results.

• type position = {line?: int, offset?: int, end_offset?: int, file?: string,
id?: long} describes a source position within Isabelle text. Only the line
and file fields make immediate sense to external programs. Detailed off-
set and end_offset positions are counted according to Isabelle symbols,
see Symbol.symbol in Isabelle/ML [4]. The position id belongs to the
representation of command transactions in the Isabelle/PIDE protocol:
it normally does not occur in externalized positions.

• type message = {kind: string, message: string, pos?: position} where
the kind provides some hint about the role and importance of the
message. The main message kinds are writeln (for regular output),
warning, error.

CHAPTER 4. THE ISABELLE SERVER 59

• type error_message = {kind: "error", message: string} refers to error
messages in particular. These occur routinely with ERROR or FAILED
replies, but also as initial command syntax errors (which are omitted
in the command specifications below).

• type theory_progress = {kind: "writeln", message: string, theory:
string, session: string, percentage?: int} reports formal progress in load-
ing theories (e.g. when building a session image). Apart from a regular
output message, it also reveals the formal theory name (e.g. "HOL.Nat")
and session name (e.g. "HOL"). Note that some rare theory names lack a
proper session prefix, e.g. theory "Main" in session "HOL". The optional
percentage has the same meaning as in type node_status below.

• type timing = {elapsed: double, cpu: double, gc: double} refers to com-
mon Isabelle timing information in seconds, usually with a precision of
three digits after the point (whole milliseconds).

• type uuid = string refers to a Universally Unique Identifier (UUID) as
plain text.7 Such identifiers are created as private random numbers of
the server and only revealed to the client that creates a certain resource
(e.g. task or session). A client may disclose this information for use
in a different client connection: this allows to share sessions between
multiple connections.
Client commands need to provide syntactically wellformed UUIDs: this
is trivial to achieve by using only identifiers that have been produced
by the server beforehand.

• type task = {task: uuid} identifies a newly created asynchronous task
and thus allows the client to control it by the cancel command. The
same task identification is included in all messages produced by this
task.

• type session_id = {session_id: uuid} identifies a newly created PIDE
session managed by the server. Sessions are independent of client con-
nections and may be shared by different clients, as long as the internal
session identifier is known.

• type node = {node_name: string, theory_name: string} represents
the internal node name of a theory. The node_name is derived from
the canonical theory file-name (e.g. "~~/src/HOL/Examples/Seq.thy"

7See https://www.ietf.org/rfc/rfc4122.txt and https://docs.oracle.com/en/java/
javase/21/docs/api/java.base/java/util/UUID.html.

https://www.ietf.org/rfc/rfc4122.txt
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/UUID.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/UUID.html

CHAPTER 4. THE ISABELLE SERVER 60

after normalization within the file-system). The theory_name is the
session-qualified theory name (e.g. HOL-Examples.Seq).

• type node_status = {ok: bool, total: int, unprocessed: int, running:
int, warned: int, failed: int, finished: int, canceled: bool, consolidated:
bool, percentage: int} represents a formal theory node status of the
PIDE document model as follows.

– Fields total, unprocessed, running, warned, failed, finished account
for individual commands within a theory node; ok is an abstrac-
tion for failed = 0.

– The canceled flag tells if some command in the theory has been
spontaneously canceled (by an Interrupt exception that could also
indicate resource problems).

– The consolidated flag indicates whether the outermost theory com-
mand structure has finished (or failed) and the final end command
has been checked.

– The percentage field tells how far the node has been processed.
It ranges between 0 and 99 in normal operation, and reaches 100
when the node has been formally consolidated as described above.

4.4 Server commands and results
Here follows an overview of particular Isabelle server commands with their
results, which are usually represented as JSON values with types according
to §4.3. The general format of input and output messages is described in
§4.2.3. The relevant Isabelle/Scala source files are:

$ISABELLE_HOME/src/Pure/Tools/server_commands.scala
$ISABELLE_HOME/src/Pure/Tools/server.scala
$ISABELLE_HOME/src/Pure/General/json.scala

4.4.1 Command help

regular result: OK [string]

The help command has no argument and returns the list of server command
names. This is occasionally useful for interactive experimentation (see also
isabelle client in §4.1.2).

CHAPTER 4. THE ISABELLE SERVER 61

4.4.2 Command echo
argument: any
regular result: OK any

The echo command is the identity function: it returns its argument as regular
result. This is occasionally useful for testing and interactive experimentation
(see also isabelle client in §4.1.2).
The Scala type of echo is actually more general than given above: Unit,
XML.Elem, JSON.T work uniformly. Note that XML.Elem might be difficult to
type on the console in its YXML syntax (§1.6).

4.4.3 Command shutdown

regular result: OK

The shutdown command has no argument and result value. It forces a shut-
down of the connected server process, stopping all open sessions and closing
the server socket. This may disrupt pending commands on other connections!

The command-line invocation isabelle server -x opens a server connec-
tion and issues a shutdown command (see also §4.1.1).

4.4.4 Command cancel
argument: task
regular result: OK

The command cancel {"task": id} attempts to cancel the specified task.
Cancellation is merely a hint that the client prefers an ongoing process to be
stopped. The command always succeeds formally, but it may get ignored by
a task that is still running; it might also refer to a non-existing or no-longer
existing task (without producing an error).
Successful cancellation typically leads to an asynchronous failure of type
FAILED {task: uuid, message: "Interrupt"}. A different message is also
possible, depending how the task handles the event.

CHAPTER 4. THE ISABELLE SERVER 62

4.4.5 Command session_build

argument: session_build_args
immediate result: OK task
notifications: NOTE task ⊕ (theory_progress | message)
regular result: FINISHED task ⊕ session_build_results
error result: FAILED task ⊕ error_message ⊕ session_build_results

type session_build_args =
{session: string,

preferences?: string, default: server preferences
options?: [string],
dirs?: [string],
include_sessions: [string],
verbose?: bool}

type session_build_result =
{session: string,

ok: bool,
return_code: int,
timeout: bool,
timing: timing}

type session_build_results =
{ok: bool,

return_code: int,
sessions: [session_build_result]}

The session_build command prepares a session image for interactive use
of theories. This is a limited version of command-line tool isabelle build
(§2.3), with specific options to request a formal context for an interactive
PIDE session.
The build process is asynchronous, with notifications that inform about the
progress of loaded theories. Some further informative messages are output
as well.
Coordination of independent build processes is at the discretion of the client
(or end-user), just as for isabelle build and isabelle jedit. There is
no built-in coordination of conflicting builds with overlapping hierarchies of
session images. In the worst case, a session image produced by one task may
get overwritten by another task!

CHAPTER 4. THE ISABELLE SERVER 63

Arguments

The session field specifies the target session name. The build process will
produce all required ancestor images according to the overall session graph.

The environment of Isabelle system options is determined from preferences
that are augmented by options, which is a list individual updates of the
form the name=value or name (the latter abbreviates name=true); see also
command-line option -o for isabelle build. The preferences are loaded
from the file $ISABELLE_HOME_USER/etc/preferences by default, but the
client may provide alternative contents for it (as text, not a file-name).
This could be relevant in situations where client and server run in differ-
ent operating-system contexts.

The dirs field specifies additional directories for session ROOT and ROOTS
files (§2.1). This augments the name space of available sessions; see also
option -d in isabelle build.

The include_sessions field specifies sessions whose theories should be in-
cluded in the overall name space of session-qualified theory names. This
corresponds to a sessions specification in ROOT files (§2.1). It enables the
use_theories command (§4.4.8) to refer to sources from other sessions in a
robust manner, instead of relying on directory locations.

Intermediate output

The asynchronous notifications of command session_build mainly serve as
progress indicator: the output resembles that of the session build window of
Isabelle/jEdit after startup [6].
For the client it is usually sufficient to print the messages in plain text,
but note that theory_progress also reveals formal theory and session names
directly.

Results

The overall session_build_results contain both a summary and an entry
session_build_result for each session in the build hierarchy. The result is
always provided, independently of overall success (FINISHED task) or failure
(FAILED task).
The ok field tells abstractly, whether all required session builds came out as
ok, i.e. with zero return_code. A non-zero return_code indicates an error
according to usual POSIX conventions for process exit.

CHAPTER 4. THE ISABELLE SERVER 64

The individual session_build_result entries provide extra fields:

• timeout tells if the build process was aborted after running too long,

• timing gives the overall process timing in the usual Isabelle format with
elapsed, CPU, GC time.

Examples

Build of a session image from the Isabelle distribution:

session_build {"session": "HOL-Algebra"}

Build a session image from the Archive of Formal Proofs:

session_build {"session": "Coinductive", "dirs": ["$AFP_BASE/thys"]}

4.4.6 Command session_start

argument: session_build_args ⊕ {print_mode?: [string]}
immediate result: OK task
notifications: NOTE task ⊕ (theory_progress | message)
regular result: FINISHED task ⊕ session_id ⊕ {tmp_dir : string}
error result: FAILED task ⊕ error_message

The session_start command starts a new Isabelle/PIDE session with un-
derlying Isabelle/ML process, based on a session image that it produces
on demand using session_build. Thus it accepts all session_build_args
and produces similar notifications, but the detailed session_build_results
are omitted.
The session build and startup process is asynchronous: when the task is
finished, the session remains active for commands, until a session_stop or
shutdown command is sent to the server.
Sessions are independent of client connections: it is possible to start a session
and later apply use_theories on different connections, as long as the internal
session identifier is known: shared theory imports will be used only once (and
persist until purged explicitly).

CHAPTER 4. THE ISABELLE SERVER 65

Arguments

Most arguments are shared with session_build (§4.4.5).

The print_mode field adds identifiers of print modes to be made active for
this session. For example, "print_mode": ["ASCII"] prefers ASCII re-
placement syntax over mathematical Isabelle symbols. See also option -m
in isabelle ML_process (§1.3).

Results

The session_id provides the internal identification of the session object
within the server process. It can remain active as long as the server is run-
ning, independently of the current client connection.

The tmp_dir field refers to a temporary directory that is specifically cre-
ated for this session and deleted after it has been stopped. This may serve
as auxiliary file-space for the use_theories command, but concurrent use
requires some care in naming temporary files, e.g. by using sub-directories
with globally unique names.
As tmp_dir is the default master_dir for commands use_theories and
purge_theories, theory files copied there may be used without further path
specification.

Examples

Start a default Isabelle/HOL session:

session_start {"session": "HOL"}

Start a session from the Archive of Formal Proofs:

session_start {"session": "Coinductive", "dirs": ["$AFP_BASE/thys"]}

Start a session with fine-tuning of options:

session_start {"session": "HOL",
"options": ["headless_consolidate_delay=0.5", "headless_prune_delay=5"]}

CHAPTER 4. THE ISABELLE SERVER 66

4.4.7 Command session_stop

argument: session_id
immediate result: OK task
regular result: FINISHED task ⊕ session_stop_result
error result: FAILED task ⊕ error_message ⊕ session_stop_result

type session_stop_result = {ok: bool, return_code: int}

The session_stop command forces a shutdown of the identified PIDE ses-
sion. This asynchronous tasks usually finishes quickly. Failure only hap-
pens in unusual situations, according to the return code of the underlying
Isabelle/ML process.

Arguments

The session_id provides the UUID originally created by the server for this
session.

Results

The ok field tells abstractly, whether the Isabelle/ML process has terminated
properly.
The return_code field expresses this information according to usual POSIX
conventions for process exit.

4.4.8 Command use_theories

argument: use_theories_arguments
immediate result: OK task
regular result: FINISHED use_theories_results

CHAPTER 4. THE ISABELLE SERVER 67

type use_theories_arguments =
{session_id: uuid,

theories: [string],
master_dir?: string, default: session tmp_dir
pretty_margin?: double, default: 76
unicode_symbols?: bool,
export_pattern?: string,
check_delay?: double, default: 0.5
check_limit?: int,
watchdog_timeout?: double, default: 600.0
nodes_status_delay?: double} default: -1.0

type export =
{name: string, base64: bool, body: string}

type node_results =
{status: node_status, messages: [message], exports: [export]}

type nodes_status =
[node ⊕ {status: node_status}]

type use_theories_results =
{ok: bool,

errors: [message],
nodes: [node ⊕ node_results]}

The use_theories command updates the identified session by adding the
current version of theory files to it, while dependencies are resolved implicitly.
The command succeeds eventually, when all theories have status terminated
or consolidated in the sense of node_status (§4.3).
Already used theories persist in the session until purged explicitly (§4.4.9).
This also means that repeated invocations of use_theories are idempotent:
it could make sense to do that with different values for pretty_margin or
unicode_symbols to get different formatting for errors or messages.

A non-empty export_pattern means that theory exports are retrieved (see
§2.5). An export name roughly follows file-system standards: “/” separated
list of base names (excluding special names like “.” or “..”). The base64 field
specifies the format of the body string: it is true for a byte vector that cannot
be represented as plain text in UTF-8 encoding, which means the string needs
to be decoded as in java.util.Base64.getDecoder.decode(String).

The status of PIDE processing is checked every check_delay seconds, and
bounded by check_limit attempts (default: 0, i.e. unbounded). A check_
limit > 0 effectively specifies a global timeout of check_delay × check_limit
seconds.

CHAPTER 4. THE ISABELLE SERVER 68

If watchdog_timeout is greater than 0, it specifies the timespan (in seconds)
after the last command status change of Isabelle/PIDE, before finishing with
a potentially non-terminating or deadlocked execution.

A non-negative nodes_status_delay enables continuous notifications of kind
nodes_status, with a field of name and type nodes_status. The time interval
is specified in seconds; by default it is negative and thus disabled.

Arguments

The session_id is the identifier provided by the server, when the session was
created (possibly on a different client connection).

The theories field specifies theory names as in theory imports or in ROOT
theories.

The master_dir field specifies the master directory of imported the-
ories: it acts like the “current working directory” for locating theory
files. This is irrelevant for theories with an absolute path name (e.g.
"~~/src/HOL/Examples/Seq.thy") or session-qualified theory name (e.g.
"HOL-Examples.Seq").

The pretty_margin field specifies the line width for pretty-printing. The
default is suitable for classic console output. Formatting happens at the end
of use_theories, when all prover messages are exported to the client.

The unicode_symbols field set to true renders message output for direct
output on a Unicode capable channel, ideally with the Isabelle fonts as in
Isabelle/jEdit. The default is to keep the symbolic representation of Isabelle
text, e.g. \<forall> instead of its rendering as ∀ . This means the client
needs to perform its own rendering before presenting it to the end-user.

Results

The ok field indicates overall success of processing the specified theories with
all their dependencies.
When ok is false, the errors field lists all errors cumulatively (including im-
ported theories). The messages contain position information for the original
theory nodes.

The nodes field provides detailed information about each imported theory
node. The individual fields are as follows:

CHAPTER 4. THE ISABELLE SERVER 69

• node_name: the canonical name for the theory node, based on its file-
system location;

• theory_name: the logical theory name;

• status: the overall node status, e.g. see the visualization in the Theories
panel of Isabelle/jEdit [6];

• messages: the main bulk of prover messages produced in this theory
(with kind writeln, warning, error).

Examples

Process some example theory from the Isabelle distribution, within the con-
text of an already started session for Isabelle/HOL (see also §4.4.6):

use_theories {"session_id": ..., "theories": ["~~/src/HOL/Examples/Seq"]}

Process some example theories in the context of their (single) parent session:

session_start {"session": "HOL-Library"}
use_theories {"session_id": ..., "theories": ["~~/src/HOL/Unix/Unix"]}
session_stop {"session_id": ...}

Process some example theories that import other theories via session-
qualified theory names:

session_start {"session": "HOL", "include_sessions": ["HOL-Unix"]}
use_theories {"session_id": ..., "theories": ["HOL-Unix.Unix"]}
session_stop {"session_id": ...}

4.4.9 Command purge_theories

argument: purge_theories_arguments
regular result: OK purge_theories_result
type purge_theories_arguments =
{session_id: uuid,

theories: [string],
master_dir?: string, default: session tmp_dir
all?: bool}

CHAPTER 4. THE ISABELLE SERVER 70

type purge_theories_result = {purged: [string]}

The purge_theories command updates the identified session by remov-
ing theories that are no longer required: theories that are used in pending
use_theories tasks or imported by other theories are retained.

Arguments

The session_id is the identifier provided by the server, when the session was
created (possibly on a different client connection).

The theories field specifies theory names to be purged: imported dependencies
are not completed. Instead it is possible to provide the already completed
import graph returned by use_theories as nodes / node_name.

The master_dir field specifies the master directory as in use_theories. This
is irrelevant, when passing fully-qualified theory node names (e.g. node_name
from nodes in use_theories_results).

The all field set to true attempts to purge all presently loaded theories.

Results

The purged field gives the theory nodes that were actually removed.

The retained field gives the remaining theory nodes, i.e. the complement of
purged.

Chapter 5

Isabelle/Scala systems
programming

Isabelle/ML and Isabelle/Scala are the two main implementation languages
of the Isabelle environment:

• Isabelle/ML is for mathematics, to develop tools within the context of
symbolic logic, e.g. for constructing proofs or defining domain-specific
formal languages. See the Isabelle/Isar implementation manual [4] for
more details.

• Isabelle/Scala is for physics, to connect with the world of systems and
services, including editors and IDE frameworks.

There are various ways to access Isabelle/Scala modules and operations:

• Isabelle command-line tools (§5.1) run in a separate Java process.

• Isabelle/ML antiquotations access Isabelle/Scala functions (§5.3) via
the PIDE protocol: execution happens within the running Java process
underlying Isabelle/Scala.

• The Console/Scala plugin of Isabelle/jEdit [6] operates on the running
Java application, using the Scala read-eval-print-loop (REPL).

The main Isabelle/Scala/jEdit functionality is provided by $ISABELLE_HOME/
lib/classes/isabelle.jar. Further underlying Scala and Java libraries
are bundled with Isabelle, e.g. to access SQLite or PostgreSQL via JDBC.
Add-on Isabelle components may augment the system environment by pro-
viding suitable configuration in etc/settings (GNU bash script). The shell
function classpath helps to write etc/settings in a portable manner: it
refers to library jar files in standard POSIX path notation. On Windows,
this is converted to native platform format, before invoking Java (§5.1).

71

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 72

There is also an implicit build process for Isabelle/Scala/Java modules, based
on etc/build.props within the component directory (see also §5.2). See
$ISABELLE_HOME/src/Tools/Demo/README.md for an example components
with command-line tools in Isabelle/Scala.

5.1 Command-line tools
5.1.1 Java Runtime Environment
The isabelle java tool is a direct wrapper for the Java Runtime Environ-
ment, within the regular Isabelle settings environment (§1.1) and Isabelle
classpath. The command line arguments are that of the bundled Java distri-
bution: see option -help in particular.
The java executable is taken from ISABELLE_JDK_HOME, according to the
standard directory layout for regular distributions of OpenJDK.
The shell function isabelle_jdk allows shell scripts to invoke other Java
tools robustly (e.g. isabelle_jdk jar), without depending on accidental
operating system installations.

5.1.2 Scala toplevel
The isabelle scala tool is a direct wrapper for the Scala toplevel, similar
to isabelle java above. The command line arguments are that of the
bundled Scala distribution: see option -help in particular. This allows to
interact with Isabelle/Scala interactively.

Example

Explore the Isabelle system environment in Scala:

$ isabelle scala

import isabelle._

val isabelle_home = Isabelle_System.getenv("ISABELLE_HOME")

val options = Options.init()
options.bool("browser_info")
options.string("document")

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 73

5.1.3 Scala compiler
The isabelle scalac tool is a direct wrapper for the Scala compiler; see
also isabelle scala above. The command line arguments are that of the
bundled Scala distribution.
This provides a low-level mechanism to compile further Scala modules, de-
pending on existing Isabelle/Scala functionality; the resulting class or jar
files can be added to the Java classpath using the shell function classpath.
A more convenient high-level approach works via etc/build.props (see
§5.2).

5.2 Isabelle/Scala/Java modules
5.2.1 Component configuration via etc/build.props

Isabelle components may augment the Isabelle/Scala/Java environment
declaratively via properties given in etc/build.props (within the compo-
nent directory). This specifies an output jar module, based on Scala or Java
sources, and arbitrary resources. Moreover, a module can specify services
that are subclasses of isabelle.Isabelle_System.Service; these have a
particular meaning to Isabelle/Scala tools.
Before running a Scala or Java process, the Isabelle system implicitly ensures
that all provided modules are compiled and packaged (as jars). It is also
possible to invoke isabelle scala_build explicitly, with extra options.

The syntax of etc/build.props follows a regular Java properties file1, but
the encoding is UTF-8, instead of historic ISO 8859-1 from the API docu-
mentation.
The subsequent properties are relevant for the Scala/Java build process.
Most properties are optional: the default is an empty string (or list). File
names are relative to the main component directory and may refer to Isabelle
settings variables (e.g. $ISABELLE_HOME).

• title (required) is a human-readable description of the module, used
in printed messages.

• module specifies a jar file name for the output module, as re-
sult of the specified sources (and resources). If this is absent (or

1https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/Properties.
html#load(java.io.Reader)

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/Properties.html#load(java.io.Reader)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/Properties.html#load(java.io.Reader)

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 74

no_build is set, as described below), there is no implicit build pro-
cess. The contributing sources might be given nonetheless, notably for
isabelle scala_project (§5.2.3), which includes Scala/Java sources
of components, while suppressing jar modules (to avoid duplication of
program content).

• no_build is a Boolean property, with default false. If set to true, the
implicit build process for the given module is omitted — it is assumed
to be provided by other means.

• scalac_options and javac_options augment the default settings
ISABELLE_SCALAC_OPTIONS and ISABELLE_JAVAC_OPTIONS for this
component; option syntax follows the regular command-line tools
scalac and javac, respectively.

• main specifies the main entry point for the jar module. This is only
relevant for direct invocation like “java -jar test.jar”.

• requirements is a list of jar modules that are needed in the com-
pilation process, but not provided by the regular classpath (notably
ISABELLE_CLASSPATH).
A normal entry refers to a single jar file name, possibly with set-
tings variables as usual. E.g. $ISABELLE_SCALA_JAR for the main
$ISABELLE_HOME/lib/classes/isabelle.jar (especially relevant for
add-on modules).
A special entry is of the form env:variable and refers to a settings
variable from the Isabelle environment: its value may consist of multi-
ple jar entries (separated by colons). Environment variables are not
expanded recursively.

• resources is a list of files that should be included in the resulting
jar file. Each item consists of a pair separated by colon: source:target
means to copy an existing source file (relative to the component di-
rectory) to the given target file or directory (relative to the jar name
space). A file specification without colon abbreviates file:file, i.e. the
file is copied while retaining its relative path name.

• sources is a list of .scala or .java files that contribute to the specified
module. It is possible to use both languages simultaneously: the Scala
and Java compiler will be invoked consecutively to make this work.

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 75

• services is a list of class names to be registered as Isabelle service
providers (subclasses of isabelle.Isabelle_System.Service). In-
ternal class names of the underlying JVM need to be given: e.g. see
method java.lang.Object.getClass.
Particular services require particular subclasses: instances are filtered
according to their dynamic type. For example, class isabelle.
Isabelle_Scala_Tools collects Scala command-line tools, and class
isabelle.Scala.Functions collects Scala functions (§5.3).

5.2.2 Explicit Isabelle/Scala/Java build
The isabelle scala_build tool explicitly invokes the build process for all
registered components.

Usage: isabelle scala_build [OPTIONS]

Options are:
-f force fresh build
-q quiet mode: suppress stdout/stderr

Build Isabelle/Scala/Java modules of all registered components
(if required).

For each registered Isabelle component that provides etc/build.props,
the specified output module is checked against the corresponding input
requirements, resources, sources. If required, there is an automatic build
using scalac or javac (or both). The identity of input files is recorded within
the output jar, using SHA1 digests in META-INF/isabelle/shasum.

Option -f forces a fresh build, regardless of the up-to-date status of input
files vs. the output module.

Option -q suppresses all output on stdout/stderr produced by the Scala or
Java compiler.

Explicit invocation of isabelle scala_build mainly serves testing or appli-
cations with special options: the Isabelle system normally does an automatic
the build on demand.

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 76

5.2.3 Project setup for common Scala IDEs
The isabelle scala_project tool creates a project configuration for all
Isabelle/Java/Scala modules specified in components via etc/build.props,
together with additional source files given on the command-line:
Usage: isabelle scala_project [OPTIONS] [MORE_SOURCES ...]

Options are:
-D DIR project directory (default: "$ISABELLE_HOME_USER/scala_project")
-G use Gradle as build tool
-L make symlinks to original source files
-M use Maven as build tool
-f force update of existing directory
-v verbose

Setup project for Isabelle/Scala/jEdit --- to support common IDEs such
as IntelliJ IDEA. Either option -G or -M is mandatory to specify the
build tool.

The generated configuration is for Gradle2 or Maven3, but the main purpose
is to import it into common IDEs like IntelliJ IDEA4. This allows to explore
the sources with static analysis and other hints in real-time.
The generated files refer to physical file-system locations, using the path no-
tation of the underlying OS platform. Thus the project needs to be recreated
whenever the Isabelle installation is changed or moved.

Option -G selects Gradle and -M selects Maven as Java/Scala build tool:
either one needs to be specified explicitly. These tools have a tendency to
break down unexpectedly, so supporting both increases the chances that the
generated IDE project works properly.

Option -L produces symlinks to the original files: this allows to develop
Isabelle/Scala/jEdit modules within an external IDE. The default is to copy
source files, so editing them within the IDE has no permanent effect on the
originals.

Option -D specifies an explicit project directory, instead of the default
$ISABELLE_HOME_USER/scala_project. Option -f forces an existing
project directory to be purged — after some sanity checks that it has been
generated by isabelle scala_project before.

Option -v enables verbose mode.
2https://gradle.org
3https://maven.apache.org
4https://www.jetbrains.com/idea

https://gradle.org
https://maven.apache.org
https://www.jetbrains.com/idea

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 77

Examples

Create a project directory and for editing the original sources:

isabelle scala_project -f -L

On Windows, this usually requires Administrator rights, in order to create
native symlinks.

5.3 Registered Isabelle/Scala functions
5.3.1 Defining functions in Isabelle/Scala
The service class isabelle.Scala.Functions collects Scala functions of
type isabelle.Scala.Fun: by registering instances via services in etc/
build.props (§5.2), it becomes possible to invoke Isabelle/Scala from
Isabelle/ML (see below).
An example is the predefined collection of isabelle.Scala.Functions in
$ISABELLE_HOME/etc/build.props. The overall list of registered functions
is accessible in Isabelle/Scala as isabelle.Scala.functions.
The general class isabelle.Scala.Fun expects a multi-argument /
multi-result function List[isabelle.Bytes] => List[isabelle.Bytes];
more common are instances of isabelle.Scala.Fun_Strings for type
List[String] => List[String], or isabelle.Scala.Fun_String for type
String => String.

5.3.2 Invoking functions in Isabelle/ML
Isabelle/PIDE provides a protocol to invoke registered Scala functions in ML:
this works both within the Prover IDE and in batch builds.
The subsequent ML antiquotations refer to Scala functions in a formally-
checked manner.

scala_function : ML_antiquotation
scala : ML_antiquotation

scala_function�
�scala

�
�

embedded

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 78

@{scala_function name} inlines the checked function name as ML string
literal.

@{scala name} and @{scala_thread name} invoke the checked function via
the PIDE protocol. In Isabelle/ML this appears as a function of type
string list -> string list or string -> string, depending on
the definition in Isabelle/Scala. Evaluation is subject to interrupts
within the ML runtime environment as usual. A null result in Scala
raises an exception Scala.Null in ML. The execution of @{scala}
works via a Scala future on a bounded thread farm, while @{scala_
thread} always forks a separate Java/VM thread.
The standard approach of representing datatypes via strings works
via XML in YXML transfer syntax. See Isabelle/ML operations
and modules YXML.string_of_body, YXML.parse_body, XML.Encode,
XML.Decode; similarly for Isabelle/Scala. Isabelle symbols may have
to be recoded via Scala operations isabelle.Symbol.decode and
isabelle.Symbol.encode.

Examples

Invoke the predefined Scala function echo:
ML ‹

val s = "test";
val s’ = scala ‹echo› s;
assert (s = s’)

›

Let the Scala compiler process some toplevel declarations, producing a list
of errors:
ML ‹

val source = "class A(a: Int, b: Boolean)"
val errors =

scala ‹scala_toplevel› source
|> YXML.parse_body
|> let open XML.Decode in list string end;

assert (null errors)›

The above is merely for demonstration. See Scala_Compiler.toplevel for
a more convenient version with builtin decoding and treatment of errors.

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 79

5.4 Documenting Isabelle/Scala entities
The subsequent document antiquotations help to document Isabelle/Scala
entities, with formal checking of names against the Isabelle classpath.

scala : antiquotation
scala_object : antiquotation

scala_type : antiquotation
scala_method : antiquotation

scala
�� ���

�scala_object
�� ��

�
�

embedded

scala_type
�� ��embedded types

scala_method
�� ��class embedded types args

class

�
� (

����in
����name types)

����
�
�

types

�
� [

���� name ,
�����

�
�
�

]
����

�
�

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 80

args

�
� (

���� nat�
� _

�����
�name

�
�

�

� ,
����

�

�

�
�

)
����

�
�

@{scala s} is similar to @{verbatim s}, but the given source text is checked
by the Scala compiler as toplevel declaration (without evaluation). This
allows to write Isabelle/Scala examples that are statically checked.

@{scala_object x} checks the given Scala object name (simple value or
ground module) and prints the result verbatim.

@{scala_type T [A]} checks the given Scala type name (with optional type
parameters) and prints the result verbatim.

@{scala_method (in c[A]) m[B](n)} checks the given Scala method m in
the context of class c. The method argument slots are either specified
by a number n or by a list of (optional) argument types; this may refer
to type variables specified for the class or method: A or B above.
Everything except for the method name m is optional. The absence
of the class context means that this is a static method. The absence
of arguments with types means that the method can be determined
uniquely as (m _) in Scala (no overloading).

Examples

Miscellaneous Isabelle/Scala entities:

• object: isabelle.Isabelle_Process

• type without parameter: isabelle.Console_Progress

• type with parameter: List[A]

• static method: isabelle.Isabelle_System.bash

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 81

• class and method with type parameters: List[A].map

• overloaded method with argument type: Int.+

Chapter 6

Phabricator / Phorge server
setup

The Isabelle development site https://isabelle-dev.sketis.net uses Phorge to
provide a comprehensive view on several repositories: Isabelle proper, the
Archive of Formal Proofs, and Poly/ML.
Phorge1 is an open-source product to support the development process of
complex software projects (open or closed ones). It is a community fork to
replace the former Phabricator2 project, which is now inactive. Subsequently,
the product name is always Phorge instead of Phabricator, but files and other
formal names usually refer to phabricator.
Following the original tradition of Phabricator, almost everything in Phorge
is a bit different and unusual. The official project description is:

Your opinionated Free/Libre and Open Source, community driven
platform for collaborating, managing, organizing and reviewing
software projects.

Ongoing changes and discussions about changes are maintained uniformly
within a MySQL database. There are standard connections to major version
control systems: Subversion, Mercurial, Git. So Phorge offers a counter-
model to trends of monopoly and centralized version control, especially due
to Microsoft’s Github and Atlassian’s Bitbucket.
A notable public instance of Phorge is running on https://gitpull.it. Inde-
pendent self-hosting requires an old-school LAMP server (Linux, Apache,
MySQL, PHP): a cheap virtual machine on the Net is sufficient, there is no
need for special “cloud” providers. So it is feasible to remain the master of
your virtual home, according to the principle “to own all your data”. Thus
Phorge is similar to the well-known Nextcloud3 server product, concerning
both the technology and sociology.

1https://phorge.it
2https://www.phacility.com/phabricator
3https://nextcloud.com

82

https://isabelle-dev.sketis.net
https://gitpull.it
https://phorge.it
https://www.phacility.com/phabricator
https://nextcloud.com

CHAPTER 6. PHABRICATOR / PHORGE SERVER SETUP 83

Initial Phorge configuration requires many details to be done right. Isabelle
provides some command-line tools to help with the setup, and afterwards
Isabelle support is optional: it is possible to run and maintain the server,
without requiring the somewhat bulky Isabelle distribution again.

Assuming an existing installation of Phorge, the Isabelle command-line tool
isabelle hg_setup (§7.6) helps to create new repositories or to migrate old
ones. In particular, this avoids the lengthy sequence of clicks in Phorge to
make a new private repository with hosting on the server. (Phorge is a soft-
ware project management platform, where initial repository setup happens
rarely in practice.)

6.1 Quick start
The starting point is a fresh installation of Ubuntu 22.04 or 24.04 LTS4:
these versions are mandatory due to subtle dependencies on system packages
and configuration that is assumed by the Isabelle setup tool.
For production use, a proper Virtual Server or Root Server product from
a hosting provider will be required, including an Internet Domain Name
(§6.1.4). Initial experimentation also works on a local host, e.g. via Virtu-
alBox5. The proforma domain localhost is used by default: it maps arbi-
trary subdomains to the usual localhost address. This allows to use e.g.
http://phabricator-vcs.localhost for initial setup as described below.
All administrative commands need to be run as root user (e.g. via sudo).
Note that Isabelle refers to user-specific configuration in the user home di-
rectory via ISABELLE_HOME_USER (§1.1); that may be different or absent for
the root user and thus cause confusion.

6.1.1 Initial setup
Isabelle can manage multiple named Phorge installations: this allows to sep-
arate administrative responsibilities, e.g. different approaches to user man-
agement for different projects. Subsequently we always use the default name
“vcs”: the name will appear in file and directory locations, internal database
names and URLs.
The initial setup works as follows (with full Linux package upgrade):

isabelle phabricator_setup -U -M:

4https://ubuntu.com/download
5https://www.virtualbox.org

https://ubuntu.com/download
https://www.virtualbox.org

CHAPTER 6. PHABRICATOR / PHORGE SERVER SETUP 84

After installing many packages, cloning the Phorge distribution, initializing
the MySQL database and Apache, the tool prints an URL for further con-
figuration. Now the following needs to be provided by the web interface.

• An initial user that will get administrator rights. There is no need to
create a special admin account. Instead, a regular user that will take
over this responsibility can be used here. Subsequently we assume that
user makarius becomes the initial administrator.

• An Auth Provider to manage user names and passwords. None is pro-
vided by default, and Phorge points out this omission prominently in
its overview of Setup Issues: following these hints quickly leads to the
place where a regular Username/Password provider can be added.
Alternatively, Phorge can delegate the responsibility of authentication
to big corporations like Google and Facebook, but these can be easily
ignored. Genuine self-hosting means to manage users directly, without
outsourcing of authentication.

• A proper password for the administrator can now be set, e.g. by the
following command:

isabelle phabricator bin/auth recover makarius

The printed URL gives access to a login and password dialog in the
web interface.
Any further users will be able to provide a password directly, because
the Auth Provider is already active.

• The list of Phorge Setup Issues should be studied with some care, to
make sure that no serious problems are remaining. For example, the
request to lock the configuration can be fulfilled as follows:

isabelle phabricator bin/auth lock

A few other Setup Issues might be relevant as well, e.g. the timezone
of the server. Some more exotic points can be ignored: Phorge pro-
vides careful explanations about what it thinks could be wrong, while
leaving some room for interpretation. It may also help to reboot the
host machine, to make sure that all Webserver + PHP configuration is
properly activated.

CHAPTER 6. PHABRICATOR / PHORGE SERVER SETUP 85

6.1.2 Mailer configuration
The next important thing is messaging: Phorge needs to be able to communi-
cate with users on its own account, e.g. to reset passwords. The documenta-
tion has many variations on Configuring Outbound Email6, but a conventional
SMTP server with a dedicated phabricator user is sufficient. There is no
need to run a separate mail server on the self-hosted Linux machine: hosting
providers often include such a service for free, e.g. as part of a web-hosting
package. As a last resort it is also possible to use a corporate service like
Gmail, but such dependency dilutes the whole effort of self-hosting.

Mailer configuration requires a few command-line invocations as follows:

isabelle phabricator_setup_mail

This generates a JSON template file for the mail account details. After
editing that, the subsequent command will add and test it with Phorge:

isabelle phabricator_setup_mail -T makarius

This tells Phorge to send a message to the administrator created before; the
output informs about success or errors.
The mail configuration process can be refined and repeated until it works
properly: host name, port number, protocol etc. all need to be correct. The
key field in the JSON file identifies the name of the configuration that will
be overwritten each time, when taking over the parameters via isabelle
phabricator_setup_mail.

The effective mail configuration can be queried like this:

isabelle phabricator bin/config get cluster.mailers

6.1.3 SSH configuration
SSH configuration is important to access hosted repositories with public-key
authentication. It is done by a separate tool, because it affects the operating-
system and all installations of Phorge simultaneously.
The subsequent configuration is convenient (and ambitious): it takes away the
standard port 22 from the operating system and assigns it to Isabelle/Phorge.

6https://we.phorge.it/book/phorge/article/configuring_outbound_email

https://we.phorge.it/book/phorge/article/configuring_outbound_email

CHAPTER 6. PHABRICATOR / PHORGE SERVER SETUP 86

isabelle phabricator_setup_ssh -p 22 -q 222

Afterwards, remote login to the server host needs to use that alternative port
222. If there is a problem connecting again, the administrator can usually
access a remote console via some web interface of the virtual server provider.

The following alternative is more modest: it uses port 2222 for Phorge, and
retains port 22 for the operating system.

isabelle phabricator_setup_ssh -p 2222 -q 22

The tool can be invoked multiple times with different parameters; ports are
changed back and forth each time and services restarted.

6.1.4 Internet domain name and HTTPS configuration

So far the Phorge server has been accessible only on localhost. Proper
configuration of a public Internet domain name (with HTTPS certificate
from Let’s Encrypt) works as follows.

• Register a subdomain (e.g. vcs.example.org) as an alias for the IP
address of the underlying Linux host. This usually works by some web
interface of the hosting provider to edit DNS entries; it might require
some time for updated DNS records to become publicly available.

• Edit the Phorge website configuration file in /etc/apache2/
sites-available/ to specify ServerName and ServerAdmin like
this:

ServerName vcs.example.org
ServerAdmin webmaster@example.org

Then reload (or restart) Apache like this:

systemctl reload apache2

• Install certbot from https://certbot.eff.org following the description
for Apache and Ubuntu Linux. Run certbot interactively and let it
operate on the domain vcs.example.org.

• Inform Phorge about its new domain name like this:

https://certbot.eff.org

CHAPTER 6. PHABRICATOR / PHORGE SERVER SETUP 87

isabelle phabricator bin/config set \
phabricator.base-uri https://vcs.example.org

• Visit the website https://vcs.example.org and configure Phorge as
described before. The following options are particularly relevant for a
public website:

– Auth Provider / Username/Password: disable Allow Registration
to avoid uncontrolled registrants; users can still be invited via
email instead.

– Enable policy.allow-public to allow read-only access to re-
sources, without requiring user registration.

• Adjust phabricator.cookie-prefix for multiple installations with
overlapping domains (see also the documentation of this configuration
option within Phorge).

6.2 Global data storage and backups
The global state of a Phorge installation consists of two main parts:

1. The root directory according to /etc/isabelle-phabricator.conf or
isabelle phabricator -l: it contains the main PHP program suite
with administrative tools, and some configuration files. The default
setup also puts hosted repositories here (subdirectory repo).

2. Multiple MySQL databases with a common prefix derived from the
installation name — the same name is used as database user name.

The root user may invoke /usr/local/bin/isabelle-phabricator-dump
to create a complete database dump within the root directory. Af-
terwards it is sufficient to make a conventional file-system backup
of everything. To restore the database state, see the explanations
on mysqldump in https://we.phorge.it/book/phorge/article/configuring_
backups; some background information is in https://we.phorge.it/book/
flavor/article/so_many_databases.

The following command-line tools are particularly interesting for advanced
database maintenance (within the Phorge root directory that is traditionally
called phabricator):

https://we.phorge.it/book/phorge/article/configuring_backups
https://we.phorge.it/book/phorge/article/configuring_backups
https://we.phorge.it/book/flavor/article/so_many_databases
https://we.phorge.it/book/flavor/article/so_many_databases

CHAPTER 6. PHABRICATOR / PHORGE SERVER SETUP 88

phabricator/bin/storage help dump
phabricator/bin/storage help shell
phabricator/bin/storage help destroy
phabricator/bin/storage help renamespace

For example, copying a database snapshot from one installation to another
works as follows. Run on the first installation root directory:

phabricator/bin/storage dump > dump1.sql
phabricator/bin/storage renamespace --from phabricator_vcs \

--to phabricator_xyz --input dump1.sql --output dump2.sql

Then run on the second installation root directory:

phabricator/bin/storage destroy
phabricator/bin/storage shell < .../dump2.sql

Local configuration in phabricator/config/local/ and hosted repositories
need to be treated separately within the file-system. For the latter see also
these tools:

phabricator/bin/repository help list-paths
phabricator/bin/repository help move-paths

6.3 Upgrading Phorge installations
The Phorge community publishes a new stable version several times per
year: see also https://we.phorge.it/w/changelog. There is no need to follow
updates on the spot, but it is a good idea to upgrade occasionally — with the
usual care to avoid breaking a production system (see also §6.2 for database
dump and backup).
The Isabelle/Phorge setup provides a convenience tool to upgrade all instal-
lations uniformly:

/usr/local/bin/isabelle-phabricator-upgrade

This refers to the stable branch of the distribution repositories by default.
Alternatively, it also possible to use the master like this:

/usr/local/bin/isabelle-phabricator-upgrade master

See https://we.phorge.it/book/phorge/article/upgrading for further expla-
nations on Phorge upgrade.

https://we.phorge.it/w/changelog
https://we.phorge.it/book/phorge/article/upgrading

CHAPTER 6. PHABRICATOR / PHORGE SERVER SETUP 89

6.4 Reference of command-line tools
The subsequent command-line tools usually require root user privileges on the
underlying Linux system (e.g. via sudo bash to open a subshell, or directly
via sudo isabelle phabricator ...).

6.4.1 isabelle phabricator

The isabelle phabricator tool invokes a GNU bash command-line within
the Phorge home directory:
Usage: isabelle phabricator [OPTIONS] COMMAND [ARGS...]

Options are:
-l list available Phorge installations
-n NAME Phorge installation name (default: "vcs")

Invoke a command-line tool within the home directory of the named
Phorge installation.

Isabelle/Phorge installations are registered in the global configuration file /
etc/isabelle-phabricator.conf, with name and root directory separated
by colon (no extra whitespace). The home directory is the subdirectory
phabricator within the root.

Option -l lists the available Phorge installations with name and root direc-
tory — without invoking a command.
Option -n selects the explicitly named Phorge installation.

Examples

Print the home directory of the Phorge installation:
isabelle phabricator pwd

Print some Phorge configuration information:
isabelle phabricator bin/config get phabricator.base-uri

The latter conforms to typical command templates seen in the original Phorge
documentation:

phabricator/ $./bin/config get phabricator.base-uri

Here the user is meant to navigate to the Phorge home manually, in con-
trast to isabelle phabricator doing it automatically thanks to the global
configuration /etc/isabelle-phabricator.conf.

CHAPTER 6. PHABRICATOR / PHORGE SERVER SETUP 90

6.4.2 isabelle phabricator_setup

The isabelle phabricator_setup tool installs a fresh Phorge instance on
Ubuntu 22.04 or 24.04 LTS:

Usage: isabelle phabricator_setup [OPTIONS]

Options are:
-M SOURCE install Mercurial from source: local PATH, or URL, or ":"
-R DIR repository directory (default: "/var/www/phabricator-NAME/repo")
-U full update of system packages before installation
-n NAME Phorge installation name (default: "vcs")
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-r DIR installation root directory (default: "/var/www/phabricator-NAME")

Install Phorge as LAMP application (Linux, Apache, MySQL, PHP).

The installation name (default: "vcs") is mapped to a regular
Unix user; this is relevant for public SSH access.

Installation requires Linux root permissions. All required packages are in-
stalled automatically beforehand, this includes the Apache web server and
the MySQL database engine.
Global configuration in /etc or a few other directories like /var/www uses
name prefixes like isabelle-phabricator or phabricator. Local config-
uration for a particular installation uses more specific names derived from
phabricator-NAME, e.g. /var/www/phabricator-vcs for the default.
Knowing the naming conventions, it is possible to purge a Linux installation
from Isabelle/Phorge with some effort, but there is no automated procedure
for de-installation. In the worst case, it might be better to re-install the
virtual machine from a clean image.

Option -U ensures a full update of system packages, before installing further
packages required by Phorge. This might require a reboot.
Option -M: installs a standard Mercurial release from source: a specific ver-
sion that is known to work on Ubuntu 22.04 or 24.04, respectively. It is
also possible to specify the path or URL of the source archive (.tar.gz).
This option is recommended for production use, but it requires to uninstall
existing Mercurial packages provided by the operating system.
Option -n provides an alternative installation name. The default name vcs
means “version control system”. The name appears in the URL for SSH
access, and thus has some relevance to end-users. The initial server URL
also uses the same suffix, but that can (and should) be changed later via
regular Apache configuration.

CHAPTER 6. PHABRICATOR / PHORGE SERVER SETUP 91

Option -o augments the environment of Isabelle system options: relevant
options for Isabelle/Phorge have the prefix “phabricator_” (see also the
result of e.g. “isabelle options -l”).
Option -r specifies an alternative installation root directory: it needs to be
accessible for the Apache web server.
Option -R specifies an alternative directory for repositories that are hosted
by Phorge. Provided that it is accessible for the Apache web server, the
directory can be reused for the hgweb view by Mercurial.7

6.4.3 isabelle phabricator_setup_mail

The isabelle phabricator_setup_mail tool provides mail configuration
for an existing Phorge installation:

Usage: isabelle phabricator_setup_mail [OPTIONS]

Options are:
-T USER send test mail to Phorge user
-f FILE config file (default: "mailers.json" within Phorge root)
-n NAME Phorge installation name (default: "vcs")

Provide mail configuration for existing Phorge installation.

Proper mail configuration is vital for Phorge, but the details can be tricky.
A common approach is to re-use an existing SMTP mail service, as is often
included in regular web hosting packages. It is sufficient to create one mail
account for multiple Phorge installations, but the configuration needs to be
set for each installation.
The first invocation of isabelle phabricator_setup_mail without options
creates a JSON template file. Its key entry should be changed to something
sensible to identify the configuration, e.g. the Internet Domain Name of the
mail address. The options specify the SMTP server address and account
information.
Another invocation of isabelle phabricator_setup_mail with updated
JSON file will change the underlying Phorge installation. This can be done
repeatedly, until everything works as expected.
Option -T invokes a standard Phorge test procedure for the mail configu-
ration. The argument needs to be a valid Phorge user: the mail address is
derived from the user profile.

7See also the documentation https://www.mercurial-scm.org/wiki/PublishingRepositories
and the example https://isabelle.sketis.net/repos.

https://www.mercurial-scm.org/wiki/PublishingRepositories
https://isabelle.sketis.net/repos

CHAPTER 6. PHABRICATOR / PHORGE SERVER SETUP 92

Option -f refers to an existing JSON configuration file, e.g. from a previ-
ous successful Phorge installation: sharing mailers setup with the same mail
address is fine for outgoing mails; incoming mails are optional and not con-
figured here.

6.4.4 isabelle phabricator_setup_ssh

The isabelle phabricator_setup_ssh tool configures a special SSH ser-
vice for all Phorge installations:

Usage: isabelle phabricator_setup_ssh [OPTIONS]

Options are:
-p PORT sshd port for Phorge servers (default: 2222)
-q PORT sshd port for the operating system (default: 22)

Configure ssh service for all Phorge installations: a separate sshd
is run in addition to the one of the operating system, and ports need to
be distinct.

A particular Phorge installation is addressed by using its
name as the ssh user; the actual Phorge user is determined via
stored ssh keys.

This is optional, but very useful. It allows to refer to hosted repositories via
ssh with the usual public-key authentication. It also allows to communicate
with a Phorge server via the JSON API of Conduit8.

The Phorge SSH server distinguishes installations by their name, e.g. vcs as
SSH user name. The public key that is used for authentication identifies the
user within Phorge: there is a web interface to provide that as part of the
user profile.
The operating system already has an SSH server (by default on port 22) that
remains important for remote administration of the machine.

Options -p and -q allow to change the port assignment for both servers. A
common scheme is -p 22 -q 222 to leave the standard port to Phorge, to
simplify the ssh URL that users will see for remote repository clones.9

Redirecting the operating system sshd to port 222 requires some care: it
requires to adjust the remote login procedure, e.g. in $HOME/.ssh/config to
add a Port specification for the server machine.

8https://we.phorge.it/book/phorge/article/conduit
9For the rare case of hosting Subversion repositories, port 22 is de-facto required. Oth-

erwise Phorge presents malformed svn+ssh URLs with port specification.

https://we.phorge.it/book/phorge/article/conduit

Chapter 7

Miscellaneous tools

Subsequently we describe various Isabelle related utilities, given in alphabet-
ical order.

7.1 Building Isabelle docker images
Docker1 provides a self-contained environment for complex applications
called container, although it does not fully contain the program in a strict
sense of the word. This includes basic operating system services (usually
based on Linux), shared libraries and other required packages. Thus Docker
is a light-weight alternative to regular virtual machines, or a heavy-weight
alternative to conventional self-contained applications.
Although Isabelle can be easily run on a variety of OS environments without
extra containment, Docker images may occasionally be useful when a stan-
dardized Linux environment is required, even on Windows2 and macOS3.
Further uses are in common cloud computing environments, where applica-
tions need to be submitted as Docker images in the first place.

The isabelle docker_build tool builds docker images from a standard
Isabelle application archive for Linux:

Usage: isabelle docker_build [OPTIONS] APP_ARCHIVE

Options are:
-B NAME base image (default "ubuntu:24.04")
-E set Isabelle/bin/isabelle as entrypoint
-P NAME additional Ubuntu package collection ("X11", "latex")
-W DIR working directory that is accessible to docker,

potentially via snap (default: ".")
-l NAME default logic (default ISABELLE_LOGIC="HOL")
-n no docker build

1https://docs.docker.com
2https://docs.docker.com/docker-for-windows
3https://docs.docker.com/docker-for-mac

93

https://docs.docker.com
https://docs.docker.com/docker-for-windows
https://docs.docker.com/docker-for-mac

CHAPTER 7. MISCELLANEOUS TOOLS 94

-o FILE output generated Dockerfile
-p NAME additional Ubuntu package
-t TAG docker build tag
-v verbose

Build Isabelle docker image with default logic image, using a standard
Isabelle application archive for Linux (local file or remote URL).

Option -E sets bin/isabelle of the contained Isabelle distribution as the
standard entry point of the Docker image. Thus docker run will imitate
the isabelle command-line tool (§1.2) of a regular local installation, but
it lacks proper GUI support: isabelle jedit will not work without further
provisions. Note that the default entrypoint may be changed later via docker
run --entrypoint="...".
Option -t specifies the Docker image tag: this a symbolic name within the
local Docker name space, but also relevant for Docker Hub4.
Option -l specifies the default logic image of the Isabelle distribution con-
tained in the Docker environment: it will be produced by isabelle build
-b as usual (§2.3) and stored within the image.

Option -B specifies the Docker image taken as starting point for the
Isabelle installation: it needs to be a suitable version of Ubuntu Linux, see
also https://hub.docker.com/_/ubuntu. The default for Isabelle2025-2 is
ubuntu:24.04, but ubuntu:22.04 and ubuntu:20.04 also work. Other ver-
sions might require experimentation with the package selection.
Option -p includes additional Ubuntu packages, using the terminology of
apt-get install within the underlying Linux distribution.
Option -P refers to high-level package collections: X11 or latex as provided
by isabelle docker_build (assuming Ubuntu 24.04/22.04/20.04 LTS).
This imposes extra weight on the resulting Docker images. Note that X11
will only provide remote X11 support according to the modest GUI quality
standards of the late 1990-ies.

Option -n suppresses the actual docker build process. Option -o outputs
the generated Dockerfile. Both options together produce a Dockerfile only,
which might be useful for informative purposes or other tools.
Option -v disables quiet-mode of the underlying docker build process.

Option -W specifies an alternative work directory: it needs to be accessible
to docker, even if this is run via Snap (e.g. on Ubuntu 24.04). The default

4https://hub.docker.com

https://hub.docker.com/_/ubuntu
https://hub.docker.com

CHAPTER 7. MISCELLANEOUS TOOLS 95

“.” usually works, if this is owned by the user: the tool will create a fresh
directory within it, and remove it afterwards.

Examples

Produce a Dockerfile (without image) from a remote Isabelle distribution:

isabelle docker_build -E -n -o Dockerfile
https://isabelle.in.tum.de/website-Isabelle2025-2/dist/Isabelle2025-2_linux.tar.gz

Build a standard Isabelle Docker image from a local Isabelle distribution,
with bin/isabelle as executable entry point:

isabelle docker_build -E -t test/isabelle:Isabelle2025-2 Isabelle2025-2_linux.tar.gz

Invoke the raw Isabelle/ML process within that image:

docker run test/isabelle:Isabelle2025-2 ML_process -e "Session.welcome
()"

Invoke a Linux command-line tool within the contained Isabelle system en-
vironment:

docker run test/isabelle:Isabelle2025-2 env uname -a

The latter should always report a Linux operating system, even when running
on Windows or macOS.

7.2 Managing Isabelle components
The isabelle components tool manages Isabelle components:

Usage: isabelle components [OPTIONS] [COMPONENTS ...]

Options are:
-I init user settings
-R URL component repository (default $ISABELLE_COMPONENT_REPOSITORY)
-a resolve all missing components
-l list status
-u DIR update $ISABELLE_HOME_USER/components: add directory
-x DIR update $ISABELLE_HOME_USER/components: remove directory

Resolve Isabelle components via download and installation: given COMPONENTS
are identified via base name. Further operations manage etc/settings and

CHAPTER 7. MISCELLANEOUS TOOLS 96

etc/components in $ISABELLE_HOME_USER.

ISABELLE_COMPONENT_REPOSITORY="..."
ISABELLE_HOME_USER="..."

Components are initialized as described in §1.1.3 in a permissive manner,
which can mark components as “missing”. This state is amended by letting
isabelle components download and unpack components that are published
on the default component repository https://isabelle.in.tum.de/components
in particular.
Option -R specifies an alternative component repository. Note that file:///
URLs can be used for local directories.
Option -a selects all missing components to be resolved. Explicit components
may be named as command line-arguments as well. Note that components
are uniquely identified by their base name, while the installation takes place
in the location that was specified in the attempt to initialize the component
before.

Option -l lists the current state of available and missing components with
their location (full name) within the file-system.

Option -I initializes the user settings file to subscribe to the standard com-
ponents specified in the Isabelle repository clone — this does not make any
sense for regular Isabelle releases. An existing file that does not contain
a suitable line “init_components. . .components/main” needs to be edited
according to the printed explanation.

Options -u and -x operate on user components listed in $ISABELLE_HOME_USER/
etc/components: this avoids manual editing of Isabelle configuration files.

7.3 Viewing documentation
The isabelle doc tool displays Isabelle documentation:

Usage: isabelle doc [DOC ...]

View Isabelle documentation.

If called without arguments, it lists all available documents. Each line starts
with an identifier, followed by a short description. Any of these identifiers
may be specified as arguments, in order to display the corresponding docu-
ment.

https://isabelle.in.tum.de/components

CHAPTER 7. MISCELLANEOUS TOOLS 97

The ISABELLE_DOCS setting specifies the list of directories (separated by
colons) to be scanned for documentations.

7.4 Shell commands within the settings envi-
ronment

The isabelle env tool is a direct wrapper for the standard /usr/bin/env
command on POSIX systems, running within the Isabelle settings environ-
ment (§1.1).
The command-line arguments are that of the underlying version of env. For
example, the following invokes an instance of the GNU Bash shell within the
Isabelle environment:

isabelle env bash

7.5 Inspecting the settings environment
The Isabelle settings environment — as provided by the site-default and
user-specific settings files — can be inspected with the isabelle getenv
tool:

Usage: isabelle getenv [OPTIONS] [VARNAMES ...]

Options are:
-a display complete environment
-b print values only (doesn’t work for -a)
-d FILE dump complete environment to file (NUL terminated entries)

Get value of VARNAMES from the Isabelle settings.

With the -a option, one may inspect the full process environment that
Isabelle related programs are run in. This usually contains much more vari-
ables than are actually Isabelle settings. Normally, output is a list of lines of
the form name=value. The -b option causes only the values to be printed.
Option -d produces a dump of the complete environment to the specified file.
Entries are terminated by the ASCII NUL character, i.e. the string terminator
in C. Thus the Isabelle/Scala operation isabelle.Isabelle_System.init
can import the settings environment robustly, and provide its own isabelle.
Isabelle_System.getenv function.

CHAPTER 7. MISCELLANEOUS TOOLS 98

Examples

Get the location of ISABELLE_HOME_USER where user-specific information is
stored:

isabelle getenv ISABELLE_HOME_USER

Get the value only of the same settings variable, which is particularly useful
in shell scripts:

isabelle getenv -b ISABELLE_HOME_USER

7.6 Mercurial repository setup
The isabelle hg_setup tool simplifies the setup of Mercurial repositories,
with hosting via Phabricator (chapter 6) or SSH file server access.

Usage: isabelle hg_setup [OPTIONS] REMOTE LOCAL_DIR

Options are:
-n NAME remote repository name (default: base name of LOCAL_DIR)
-p PATH Mercurial path name (default: "default")
-r assume that remote repository already exists

Setup a remote vs. local Mercurial repository: REMOTE either refers to a
Phabricator server "user@host" or SSH file server "ssh://user@host/path".

The REMOTE repository specification excludes the actual repository name: that
is given by the base name of LOCAL_DIR, or via option -n.
By default, both sides of the repository are created on demand by default.
In contrast, option -r assumes that the remote repository already exists: it
avoids accidental creation of a persistent repository with unintended name.
The local .hg/hgrc file is changed to refer to the remote repository, usually
via the symbolic path name “default”; option -p allows to provide a different
name.

Examples

Setup the current directory as a repository with Phabricator server hosting:

isabelle hg_setup vcs@vcs.example.org .

CHAPTER 7. MISCELLANEOUS TOOLS 99

Setup the current directory as a repository with plain SSH server hosting:

isabelle hg_setup ssh://files.example.org/data/repositories .

Both variants require SSH access to the target server, via public key without
password.

7.7 Mercurial repository synchronization
The isabelle hg_sync tool synchronizes a local Mercurial repository with
a target directory.

Usage: isabelle hg_sync [OPTIONS] TARGET

Options are:
-F RULE add rsync filter RULE

(e.g. "protect /foo" to avoid deletion)
-R ROOT explicit repository root directory

(default: implicit from current directory)
-T thorough treatment of file content and directory times
-n no changes: dry-run
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-p PORT explicit SSH port
-r REV explicit revision (default: state of working directory)
-s HOST SSH host name for remote target (default: local)
-u USER explicit SSH user name
-v verbose

Synchronize Mercurial repository with TARGET directory,
which can be local or remote (see options -s -p -u).

The TARGET specifies a directory, which can be local or an a remote SSH
host; the latter requires option -s for the host name. The content is written
directly into the target, without creating a separate sub-directory. The spe-
cial sub-directory .hg_sync within the target contains meta data from the
original Mercurial repository. Repeated synchronization is guarded by the
presence of a .hg_sync sub-directory: this sanity check prevents accidental
changes (or deletion!) of targets that were not created by isabelle hg_sync.

Option -r specifies an explicit revision of the repository; the default is the
current state of the working directory (which might be uncommitted).

Option -v enables verbose mode. Option -n enables “dry-run” mode: oper-
ations are only simulated; use it with option -v to actually see results.

CHAPTER 7. MISCELLANEOUS TOOLS 100

Option -F adds a filter rule to the underlying rsync command; multiple -F
options may be given to accumulate a list of rules.

Option -R specifies an explicit repository root directory. The default is to
derive it from the current directory, searching upwards until a suitable .hg
directory is found.

Option -T indicates thorough treatment of file content and directory times.
The default is to consider files with equal time and size already as equal, and
to ignore time stamps on directories.

Options -s, -p, -u specify the SSH connection precisely. If no SSH host
name is given, the local file-system is used. An explicit port and user are
only required in special situations.

Option -p specifies an explicit port for the SSH connection underlying rsync;
the default is taken from the user’s ssh_config file.

Examples

Synchronize the current repository onto a remote host, with accurate treat-
ment of all content:

isabelle hg_sync -T -s remotename test/repos

7.8 Installing standalone Isabelle executables

By default, the main Isabelle binaries (isabelle etc.) are just run from
their location within the distribution directory, probably indirectly by the
shell through its PATH. Other schemes of installation are supported by the
isabelle install tool:

Usage: isabelle install [OPTIONS] BINDIR

Options are:
-d DISTDIR refer to DISTDIR as Isabelle distribution

(default ISABELLE_HOME)

Install Isabelle executables with absolute references to the
distribution directory.

CHAPTER 7. MISCELLANEOUS TOOLS 101

The -d option overrides the current Isabelle distribution directory as deter-
mined by ISABELLE_HOME.
The BINDIR argument tells where executable wrapper scripts for isabelle
and isabelle_java should be placed, which is typically a directory in the
shell’s PATH, such as $HOME/bin.

It is also possible to make symbolic links of the main Isabelle executables
manually, but making separate copies outside the Isabelle distribution direc-
tory will not work!

7.9 Creating instances of the Isabelle logo
The isabelle logo tool creates variants of the Isabelle logo, for inclusion
in PDFLATEX documents.

Usage: isabelle logo [OPTIONS] [NAME]

Options are:
-o FILE alternative output file
-q quiet mode

Create variant NAME of the Isabelle logo as "isabelle_name.pdf".

Option -o provides an alternative output file, instead of the default in the
current directory: isabelle_name.pdf with the lower-case version of the
given name.

Option -q omits printing of the resulting output file name.

Implementors of Isabelle tools and applications are encouraged to make de-
rived Isabelle logos for their own projects using this template. The license is
the same as for the regular Isabelle distribution (BSD).

7.10 Output the version identifier of the
Isabelle distribution

The isabelle version tool displays Isabelle version information:

Usage: isabelle version [OPTIONS]

Options are:

CHAPTER 7. MISCELLANEOUS TOOLS 102

-i short identification (derived from Mercurial id)
-t symbolic tags (derived from Mercurial id)

Display Isabelle version information.

The default is to output the Isabelle distribution name, e.g.
“Isabelle2025-2”.

Option -i produces a short identification derived from the Mercurial id of
the ISABELLE_HOME directory; option -t prints version tags (if available).
These options require either a repository clone or a repository archive (e.g.
download of https://isabelle.sketis.net/repos/isabelle/archive/tip.tar.gz).

7.11 Managed installations of Haskell and
OCaml

Code generated in Isabelle [1] for SML or Scala integrates easily using
Isabelle/ML or Isabelle/Scala respectively.
To facilitate integration with further target languages, there are tools to
provide managed installations of the required ecosystems:

• Tool isabelle ghc_setup provides a basic Haskell [3] environment
consisting of the Glasgow Haskell Compiler and the Haskell Tool Stack.

• Tool isabelle ghc_stack provides an interface to that Haskell en-
vironment; use isabelle ghc_stack --help for elementary instruc-
tions.

• Tool isabelle ocaml_setup provides a basic OCaml [2] environment
consisting of the OCaml compiler and the OCaml Package Manager.

• Tool isabelle ocaml_opam provides an interface to that OCaml en-
vironment; use isabelle ocaml_opam --help for elementary instruc-
tions.

https://isabelle.sketis.net/repos/isabelle/archive/tip.tar.gz

Bibliography

[1] F. Haftmann. Code generation from Isabelle/HOL theories.
http://isabelle.in.tum.de/doc/codegen.pdf.

[2] X. Leroy et al. The Objective Caml system – Documentation and user’s
manual. http://caml.inria.fr/pub/docs/manual-ocaml/.

[3] S. Thompson. Haskell: The Craft of Functional Programming.
Addison-Wesley, 1999.

[4] M. Wenzel. The Isabelle/Isar Implementation.
https://isabelle.in.tum.de/doc/implementation.pdf.

[5] M. Wenzel. The Isabelle/Isar Reference Manual.
https://isabelle.in.tum.de/doc/isar-ref.pdf.

[6] M. Wenzel. Isabelle/jEdit. https://isabelle.in.tum.de/doc/jedit.pdf.

103

http://isabelle.in.tum.de/doc/codegen.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/
https://isabelle.in.tum.de/doc/implementation.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/jedit.pdf

Index

bash (executable), 2, 2
browser_info (system option), 20
build (tool), 19, 23, 39, 43, 45, 47
build_log (tool), 28
build_manager (tool), 38, 39
build_manager_database (tool), 39
build_task (tool), 39

chapter_def (syntax), 14
chapter_entry (syntax), 14
client (tool), 50
components (tool), 95
condition (system option), 21
console (tool), 4, 9

doc (tool), 96
docker_build (tool), 93
document (system option), 20
document (tool), 43, 45
document_bibliography (system op-

tion), 21
document_build (system option), 46
document_comment_latex (system

option), 21
document_echo (system option), 20
document_heading_prefix (system

option), 21
document_output (system option),

20
document_tags (system option), 21
document_variants (system option),

20
dump (tool), 31

env (tool), 97
export (tool), 19, 30

find_facts_index (tool), 47
find_facts_index_build (tool), 47
find_facts_server (tool), 47

getenv (tool), 97
ghc_setup (tool), 102
ghc_stack (tool), 102

hg_setup (tool), 98
hg_sync (tool), 99

install (tool), 100
isabelle (executable), 1, 6
ISABELLE_APPLE_PLAT-

FORM64 (setting), 3
ISABELLE_BIBTEX (setting), 4,

46
ISABELLE_BROWSER_INFO

(setting), 4, 25, 44
ISABELLE_BROWSER_INFO_

SYSTEM (setting), 4, 25
ISABELLE_BUILD_OPTIONS

(setting), 24
ISABELLE_DOCS (setting), 4
ISABELLE_HEAPS (setting), 4
ISABELLE_HEAPS_SYSTEM

(setting), 4
ISABELLE_HOME (setting), 1, 3
ISABELLE_HOME_USER (set-

ting), 3
ISABELLE_IDENTIFIER (setting),

3
isabelle_java (executable), 9
ISABELLE_JAVA_PLATFORM

(setting), 4

104

INDEX 105

ISABELLE_JAVAC_OPTIONS
(setting), 74

ISABELLE_JDK_HOME (setting),
4

ISABELLE_LINE_EDITOR (set-
ting), 4

ISABELLE_LOGIC (setting), 4
ISABELLE_LUALATEX (setting),

4, 46
ISABELLE_MAKEINDEX (set-

ting), 4, 46
ISABELLE_PDFLATEX (setting),

4, 46
ISABELLE_PLATFORM64 (set-

ting), 3
ISABELLE_PLATFORM_FAMILY

(setting), 3
ISABELLE_SCALAC_OPTIONS

(setting), 74
ISABELLE_TMP_PREFIX (set-

ting), 5
ISABELLE_TOOL (setting), 2
ISABELLE_TOOL_JAVA_OP-

TIONS (setting), 5
ISABELLE_TOOLS (setting), 4, 5
ISABELLE_WINDOWS_PLAT-

FORM32 (setting), 3
ISABELLE_WINDOWS_PLAT-

FORM64 (setting), 3

java (tool), 72

logo (tool), 101

mkroot (tool), 43, 44
ML_process (tool), 7
ML_system_64 (system option), 4

ocaml_opam (tool), 102
ocaml_setup (tool), 102
options (tool), 22

PDF_VIEWER (setting), 4

phabricator (tool), 89
phabricator_setup (tool), 90
phabricator_setup_mail (tool), 91
phabricator_setup_ssh (tool), 92
process_theories (tool), 40
profiling (system option), 22

rlwrap (executable), 9

scala (antiquotation), 79
scala (ML antiquotation), 77
scala (tool), 72
scala_build (tool), 75
scala_function (ML antiquotation),

77
scala_method (antiquotation), 79
scala_object (antiquotation), 79
scala_project (tool), 76
scala_type (antiquotation), 79
scalac (tool), 73
server (tool), 49
session_entry (syntax), 15
sessions (tool), 34
sync (tool), 35
system_heaps (system option), 22
system_log (system option), 22

threads (system option), 21, 25
timeout (system option), 21
timeout_scale (system option), 21

update (tool), 32
update_cite (system option), 33
update_control_cartouches (system

option), 33
update_inner_syntax_cartouches

(system option), 33
update_path_cartouches (system

option), 33
USER_HOME (setting), 2

version (tool), 101

	The Isabelle system environment
	Isabelle settings
	Bootstrapping the environment
	Common variables
	Additional components

	The Isabelle tool wrapper
	The raw ML process
	The raw ML process as command-line tool
	Interactive mode

	The raw Isabelle Java process
	System registry via TOML
	YXML versus XML

	Isabelle sessions and build management
	Session ROOT specifications
	System build options
	Invoking the build process
	Print messages from session build database
	Retrieve theory exports
	Dump PIDE session database
	Update theory sources based on PIDE markup
	Explore sessions structure
	Synchronize source repositories and session images for Isabelle and AFP
	Remote build management
	Build manager server
	Submitting build tasks

	Process theories within a session context

	Presenting theories
	Generating HTML browser information
	Creating session root directories
	Preparing Isabelle session documents
	Full-text search for formal theory content

	The Isabelle server
	Command-line tools
	Server
	Client
	Examples

	Protocol messages
	Byte messages
	Text messages
	Input and output messages
	Initial password exchange
	Synchronous commands
	Asynchronous commands

	Types for JSON values
	Server commands and results
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 help
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 echo
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 shutdown
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cancel
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 session`_build
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 session`_start
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 session`_stop
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 use`_theories
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 purge`_theories

	Isabelle/Scala systems programming
	Command-line tools
	Java Runtime Environment
	Scala toplevel
	Scala compiler

	Isabelle/Scala/Java modules
	Component configuration via 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 etc/build.props
	Explicit Isabelle/Scala/Java build
	Project setup for common Scala IDEs

	Registered Isabelle/Scala functions
	Defining functions in Isabelle/Scala
	Invoking functions in Isabelle/ML

	Documenting Isabelle/Scala entities

	Phabricator / Phorge server setup
	Quick start
	Initial setup
	Mailer configuration
	SSH configuration
	Internet domain name and HTTPS configuration

	Global data storage and backups
	Upgrading Phorge installations
	Reference of command-line tools
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 isabelle phabricator
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 isabelle phabricator`_setup
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 isabelle phabricator`_setup`_mail
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 isabelle phabricator`_setup`_ssh

	Miscellaneous tools
	Building Isabelle docker images
	Managing Isabelle components
	Viewing documentation
	Shell commands within the settings environment
	Inspecting the settings environment
	Mercurial repository setup
	Mercurial repository synchronization
	Installing standalone Isabelle executables
	Creating instances of the Isabelle logo
	Output the version identifier of the Isabelle distribution
	Managed installations of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Haskell and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OCaml

	Bibliography
	Index

