
How to Prove it in Isabelle/HOL

Tobias Nipkow

May 23, 2024

Abstract

How does one perform induction on the length of a list? How are numerals
converted into Suc terms? How does one prove equalities in rings and other
algebraic structures?

This document is a collection of practical hints and techniques for dealing
with specific frequently occurring situations in proofs in Isabelle/HOL. Not
arbitrary proofs but proofs that refer to material that is part of Main or
Complex_Main.

This is not an introduction to

• proofs in general; for that see mathematics or logic books.

• Isabelle/HOL and its proof language; for that see the tutorial [1] or
the reference manual [3].

• the contents of theory Main; for that see the overview [2].

Contents

1 Main 2
1.1 Natural numbers . 2
1.2 Lists . 2
1.3 Algebraic simplification . 3

1

Chapter 1

Main

1.1 Natural numbers
Induction rules
In addition to structural induction there is the induction rule less_induct:

(
∧

x. (
∧

y. y < x =⇒ P y) =⇒ P x) =⇒ P a
This is often called “complete induction”. It is applied like this:

(induction n rule: less_induct)
In fact, it is not restricted to nat but works for any wellfounded order <.

There are many more special induction rules. You can find all of them
via the Find button (in Isabelle/jedit) with the following search criteria:

name: Nat name: induct

How to convert numerals into Suc terms
Solution: simplify with the lemma numeral_eq_Suc.
Example:
lemma fixes x :: int shows "x ^ 3 = x ∗ x ∗ x"
by (simp add: numeral_eq_Suc)
This is a typical situation: function “^” is defined by pattern matching on
Suc but is applied to a numeral.

Note: simplification with numeral_eq_Suc will convert all numerals. One
can be more specific with the lemmas numeral_2_eq_2 (2 = Suc (Suc 0))
and numeral_3_eq_3 (3 = Suc (Suc (Suc 0))).

1.2 Lists
Induction rules
In addition to structural induction there are a few more induction rules that
come in handy at times:

2

• Structural induction where the new element is appended to the end of
the list (rev_induct):
[[P [];

∧
x xs. P xs =⇒ P (xs @ [x])]] =⇒ P xs

• Induction on the length of a list (length_induct):
(
∧

xs. ∀ ys. length ys < length xs −→ P ys =⇒ P xs) =⇒ P xs

• Simultaneous induction on two lists of the same length (list_induct2):

[[length xs = length ys; P [] [];∧
x xs y ys.
[[length xs = length ys; P xs ys]] =⇒ P (x # xs) (y # ys)]]

=⇒ P xs ys

1.3 Algebraic simplification
On the numeric types nat, int and real, proof method simp and friends can
deal with a limited amount of linear arithmetic (no multiplication except
by numerals) and method arith can handle full linear arithmetic (on nat,
int including quantifiers). But what to do when proper multiplication is
involved? At this point it can be helpful to simplify with the lemma list
algebra_simps. Examples:

lemma fixes x :: int
shows "(x + y) ∗ (y − z) = (y − z) ∗ x + y ∗ (y−z)"

by(simp add: algebra_simps)

lemma fixes x :: " ′a :: comm_ring"
shows "(x + y) ∗ (y − z) = (y − z) ∗ x + y ∗ (y−z)"

by(simp add: algebra_simps)

Rewriting with algebra_simps has the following effect: terms are rewritten
into a normal form by multiplying out, rearranging sums and products into
some canonical order. In the above lemma the normal form will be something
like x ∗ y + y ∗ y − x ∗ z − y ∗ z. This works for concrete types like int
as well as for classes like comm_ring (commutative rings). For some classes
(e.g. ring and comm_ring) this yields a decision procedure for equality.

Additional function and predicate symbols are not a problem either:

lemma fixes f :: "int ⇒ int" shows "2 ∗ f (x∗y) − f (y∗x) < f (y∗x) + 1"
by(simp add: algebra_simps)

Here algebra_simps merely has the effect of rewriting y ∗ x to x ∗ y (or the
other way around). This yields a problem of the form 2 ∗ t − t < t + 1
and we are back in the realm of linear arithmetic.

3

Because algebra_simps multiplies out, terms can explode. If one merely
wants to bring sums or products into a canonical order it suffices to rewrite
with ac_simps:

lemma fixes f :: "int ⇒ int" shows "f (x∗y∗z) − f (z∗x∗y) = 0"
by(simp add: ac_simps)

The lemmas algebra_simps take care of addition, subtraction and multipli-
cation (algebraic structures up to rings) but ignore division (fields). The
lemmas field_simps also deal with division:

lemma fixes x :: real shows "x+z 6= 0 =⇒ 1 + y/(x+z) = (x+y+z)/(x+z)"
by(simp add: field_simps)

Warning: field_simps can blow up your terms beyond recognition.

4

Bibliography

[1] Tobias Nipkow. Programming and Proving in Isabelle/HOL. https:
//isabelle.in.tum.de/doc/prog-prove.pdf.

[2] Tobias Nipkow. What’s in Main. https://isabelle.in.tum.de/doc/
main.pdf.

[3] Makarius Wenzel. The Isabelle/Isar Reference Manual. https://
isabelle.in.tum.de/doc/isar-ref.pdf.

5

https://isabelle.in.tum.de/doc/prog-prove.pdf
https://isabelle.in.tum.de/doc/prog-prove.pdf
https://isabelle.in.tum.de/doc/main.pdf
https://isabelle.in.tum.de/doc/main.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Main
	Natural numbers
	Lists
	Algebraic simplification

