File ‹~~/src/Provers/classical.ML›
infix 4 addSIs addSEs addSDs addIs addEs addDs delrules
addSWrapper delSWrapper addWrapper delWrapper
addSbefore addSafter addbefore addafter
addD2 addE2 addSD2 addSE2;
signature CLASSICAL_DATA =
sig
val imp_elim: thm
val not_elim: thm
val swap: thm
val classical: thm
val sizef: thm -> int
val hyp_subst_tacs: (Proof.context -> int -> tactic) list
end;
signature BASIC_CLASSICAL =
sig
type wrapper = (int -> tactic) -> int -> tactic
type claset
val print_claset: Proof.context -> unit
val addDs: Proof.context * thm list -> Proof.context
val addEs: Proof.context * thm list -> Proof.context
val addIs: Proof.context * thm list -> Proof.context
val addSDs: Proof.context * thm list -> Proof.context
val addSEs: Proof.context * thm list -> Proof.context
val addSIs: Proof.context * thm list -> Proof.context
val delrules: Proof.context * thm list -> Proof.context
val addSWrapper: Proof.context * (string * (Proof.context -> wrapper)) -> Proof.context
val delSWrapper: Proof.context * string -> Proof.context
val addWrapper: Proof.context * (string * (Proof.context -> wrapper)) -> Proof.context
val delWrapper: Proof.context * string -> Proof.context
val addSbefore: Proof.context * (string * (Proof.context -> int -> tactic)) -> Proof.context
val addSafter: Proof.context * (string * (Proof.context -> int -> tactic)) -> Proof.context
val addbefore: Proof.context * (string * (Proof.context -> int -> tactic)) -> Proof.context
val addafter: Proof.context * (string * (Proof.context -> int -> tactic)) -> Proof.context
val addD2: Proof.context * (string * thm) -> Proof.context
val addE2: Proof.context * (string * thm) -> Proof.context
val addSD2: Proof.context * (string * thm) -> Proof.context
val addSE2: Proof.context * (string * thm) -> Proof.context
val appSWrappers: Proof.context -> wrapper
val appWrappers: Proof.context -> wrapper
val claset_of: Proof.context -> claset
val put_claset: claset -> Proof.context -> Proof.context
val map_theory_claset: (Proof.context -> Proof.context) -> theory -> theory
val fast_tac: Proof.context -> int -> tactic
val slow_tac: Proof.context -> int -> tactic
val astar_tac: Proof.context -> int -> tactic
val slow_astar_tac: Proof.context -> int -> tactic
val best_tac: Proof.context -> int -> tactic
val first_best_tac: Proof.context -> int -> tactic
val slow_best_tac: Proof.context -> int -> tactic
val depth_tac: Proof.context -> int -> int -> tactic
val deepen_tac: Proof.context -> int -> int -> tactic
val contr_tac: Proof.context -> int -> tactic
val dup_elim: Proof.context -> thm -> thm
val dup_intr: thm -> thm
val dup_step_tac: Proof.context -> int -> tactic
val eq_mp_tac: Proof.context -> int -> tactic
val unsafe_step_tac: Proof.context -> int -> tactic
val mp_tac: Proof.context -> int -> tactic
val safe_tac: Proof.context -> tactic
val safe_steps_tac: Proof.context -> int -> tactic
val safe_step_tac: Proof.context -> int -> tactic
val clarify_tac: Proof.context -> int -> tactic
val clarify_step_tac: Proof.context -> int -> tactic
val step_tac: Proof.context -> int -> tactic
val slow_step_tac: Proof.context -> int -> tactic
val swapify: thm list -> thm list
val swap_res_tac: Proof.context -> thm list -> int -> tactic
val inst_step_tac: Proof.context -> int -> tactic
val inst0_step_tac: Proof.context -> int -> tactic
val instp_step_tac: Proof.context -> int -> tactic
end;
signature CLASSICAL =
sig
include BASIC_CLASSICAL
val classical_rule: Proof.context -> thm -> thm
type rule = thm * (thm * thm list) * (thm * thm list)
type netpair = (int * (bool * thm)) Net.net * (int * (bool * thm)) Net.net
val rep_cs: claset ->
{safeIs: rule Item_Net.T,
safeEs: rule Item_Net.T,
unsafeIs: rule Item_Net.T,
unsafeEs: rule Item_Net.T,
swrappers: (string * (Proof.context -> wrapper)) list,
uwrappers: (string * (Proof.context -> wrapper)) list,
safe0_netpair: netpair,
safep_netpair: netpair,
unsafe_netpair: netpair,
dup_netpair: netpair,
extra_netpair: Context_Rules.netpair}
val get_cs: Context.generic -> claset
val map_cs: (claset -> claset) -> Context.generic -> Context.generic
val safe_dest: int option -> attribute
val safe_elim: int option -> attribute
val safe_intro: int option -> attribute
val unsafe_dest: int option -> attribute
val unsafe_elim: int option -> attribute
val unsafe_intro: int option -> attribute
val rule_del: attribute
val rule_tac: Proof.context -> thm list -> thm list -> int -> tactic
val standard_tac: Proof.context -> thm list -> tactic
val cla_modifiers: Method.modifier parser list
val cla_method:
(Proof.context -> tactic) -> (Proof.context -> Proof.method) context_parser
val cla_method':
(Proof.context -> int -> tactic) -> (Proof.context -> Proof.method) context_parser
end;
functor Classical(Data: CLASSICAL_DATA): CLASSICAL =
struct
fun classical_rule ctxt rule =
if is_some (Object_Logic.elim_concl ctxt rule) then
let
val thy = Proof_Context.theory_of ctxt;
val rule' = rule RS Data.classical;
val concl' = Thm.concl_of rule';
fun redundant_hyp goal =
concl' aconv Logic.strip_assums_concl goal orelse
(case Logic.strip_assums_hyp goal of
hyp :: hyps => exists (fn t => t aconv hyp) hyps
| _ => false);
val rule'' =
rule' |> ALLGOALS (SUBGOAL (fn (goal, i) =>
if i = 1 orelse redundant_hyp goal
then eresolve_tac ctxt [thin_rl] i
else all_tac))
|> Seq.hd
|> Drule.zero_var_indexes;
in if Thm.equiv_thm thy (rule, rule'') then rule else rule'' end
else rule;
fun flat_rule ctxt =
Conv.fconv_rule (Conv.prems_conv ~1 (Object_Logic.atomize_prems ctxt));
fun contr_tac ctxt =
eresolve_tac ctxt [Data.not_elim] THEN' (eq_assume_tac ORELSE' assume_tac ctxt);
fun mp_tac ctxt i =
eresolve_tac ctxt [Data.not_elim, Data.imp_elim] i THEN assume_tac ctxt i;
fun eq_mp_tac ctxt i = ematch_tac ctxt [Data.not_elim, Data.imp_elim] i THEN eq_assume_tac i;
fun swapify intrs = intrs RLN (2, [Data.swap]);
val swapped = Thm.rule_attribute [] (fn _ => fn th => th RSN (2, Data.swap));
fun swap_res_tac ctxt rls =
let
val transfer = Thm.transfer' ctxt;
fun addrl rl brls = (false, transfer rl) :: (true, transfer rl RSN (2, Data.swap)) :: brls;
in
assume_tac ctxt ORELSE'
contr_tac ctxt ORELSE'
biresolve_tac ctxt (fold_rev addrl rls [])
end;
fun dup_intr th = zero_var_indexes (th RS Data.classical);
fun dup_elim ctxt th =
let val rl = (th RSN (2, revcut_rl)) |> Thm.assumption (SOME ctxt) 2 |> Seq.hd;
in rule_by_tactic ctxt (TRYALL (eresolve_tac ctxt [revcut_rl])) rl end;
type rule = thm * (thm * thm list) * (thm * thm list);
type netpair = (int * (bool * thm)) Net.net * (int * (bool * thm)) Net.net;
type wrapper = (int -> tactic) -> int -> tactic;
datatype claset =
CS of
{safeIs: rule Item_Net.T,
safeEs: rule Item_Net.T,
unsafeIs: rule Item_Net.T,
unsafeEs: rule Item_Net.T,
swrappers: (string * (Proof.context -> wrapper)) list,
uwrappers: (string * (Proof.context -> wrapper)) list,
safe0_netpair: netpair,
safep_netpair: netpair,
unsafe_netpair: netpair,
dup_netpair: netpair,
extra_netpair: Context_Rules.netpair};
val empty_rules: rule Item_Net.T =
Item_Net.init (Thm.eq_thm_prop o apply2 #1) (single o Thm.full_prop_of o #1);
val empty_netpair = (Net.empty, Net.empty);
val empty_cs =
CS
{safeIs = empty_rules,
safeEs = empty_rules,
unsafeIs = empty_rules,
unsafeEs = empty_rules,
swrappers = [],
uwrappers = [],
safe0_netpair = empty_netpair,
safep_netpair = empty_netpair,
unsafe_netpair = empty_netpair,
dup_netpair = empty_netpair,
extra_netpair = empty_netpair};
fun rep_cs (CS args) = args;
fun joinrules (intrs, elims) = map (pair true) elims @ map (pair false) intrs;
fun tag_brls k [] = []
| tag_brls k (brl::brls) =
(1000000*subgoals_of_brl brl + k, brl) ::
tag_brls (k+1) brls;
fun tag_brls' _ _ [] = []
| tag_brls' w k (brl::brls) = ((w, k), brl) :: tag_brls' w (k + 1) brls;
fun insert_tagged_list rls = fold_rev Tactic.insert_tagged_brl rls;
fun insert (nI, nE) = insert_tagged_list o (tag_brls (~(2*nI+nE))) o joinrules;
fun insert' w (nI, nE) = insert_tagged_list o tag_brls' w (~(nI + nE)) o joinrules;
fun delete_tagged_list rls = fold_rev Tactic.delete_tagged_brl rls;
fun delete x = delete_tagged_list (joinrules x);
fun bad_thm ctxt msg th = error (msg ^ "\n" ^ Thm.string_of_thm ctxt th);
fun make_elim ctxt th =
if has_fewer_prems 1 th then bad_thm ctxt "Ill-formed destruction rule" th
else Tactic.make_elim th;
fun warn_thm ctxt msg th =
if Context_Position.is_really_visible ctxt
then warning (msg ^ Thm.string_of_thm ctxt th) else ();
fun warn_rules ctxt msg rules (r: rule) =
Item_Net.member rules r andalso (warn_thm ctxt msg (#1 r); true);
fun warn_claset ctxt r (CS {safeIs, safeEs, unsafeIs, unsafeEs, ...}) =
warn_rules ctxt "Rule already declared as safe introduction (intro!)\n" safeIs r orelse
warn_rules ctxt "Rule already declared as safe elimination (elim!)\n" safeEs r orelse
warn_rules ctxt "Rule already declared as introduction (intro)\n" unsafeIs r orelse
warn_rules ctxt "Rule already declared as elimination (elim)\n" unsafeEs r;
fun add_safe_intro w r
(cs as CS {safeIs, safeEs, unsafeIs, unsafeEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, unsafe_netpair, dup_netpair, extra_netpair}) =
if Item_Net.member safeIs r then cs
else
let
val (th, rl, _) = r;
val (safe0_rls, safep_rls) =
List.partition (Thm.no_prems o fst) [rl];
val nI = Item_Net.length safeIs + 1;
val nE = Item_Net.length safeEs;
in
CS
{safeIs = Item_Net.update r safeIs,
safe0_netpair = insert (nI, nE) (map fst safe0_rls, maps snd safe0_rls) safe0_netpair,
safep_netpair = insert (nI, nE) (map fst safep_rls, maps snd safep_rls) safep_netpair,
safeEs = safeEs,
unsafeIs = unsafeIs,
unsafeEs = unsafeEs,
swrappers = swrappers,
uwrappers = uwrappers,
unsafe_netpair = unsafe_netpair,
dup_netpair = dup_netpair,
extra_netpair = insert' (the_default 0 w) (nI, nE) ([th], []) extra_netpair}
end;
fun add_safe_elim w r
(cs as CS {safeIs, safeEs, unsafeIs, unsafeEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, unsafe_netpair, dup_netpair, extra_netpair}) =
if Item_Net.member safeEs r then cs
else
let
val (th, rl, _) = r;
val (safe0_rls, safep_rls) =
List.partition (fn (rl, _) => Thm.nprems_of rl = 1) [rl];
val nI = Item_Net.length safeIs;
val nE = Item_Net.length safeEs + 1;
in
CS
{safeEs = Item_Net.update r safeEs,
safe0_netpair = insert (nI, nE) ([], map fst safe0_rls) safe0_netpair,
safep_netpair = insert (nI, nE) ([], map fst safep_rls) safep_netpair,
safeIs = safeIs,
unsafeIs = unsafeIs,
unsafeEs = unsafeEs,
swrappers = swrappers,
uwrappers = uwrappers,
unsafe_netpair = unsafe_netpair,
dup_netpair = dup_netpair,
extra_netpair = insert' (the_default 0 w) (nI, nE) ([], [th]) extra_netpair}
end;
fun add_unsafe_intro w r
(cs as CS {safeIs, safeEs, unsafeIs, unsafeEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, unsafe_netpair, dup_netpair, extra_netpair}) =
if Item_Net.member unsafeIs r then cs
else
let
val (th, rl, dup_rl) = r;
val nI = Item_Net.length unsafeIs + 1;
val nE = Item_Net.length unsafeEs;
in
CS
{unsafeIs = Item_Net.update r unsafeIs,
unsafe_netpair = insert (nI, nE) ([fst rl], snd rl) unsafe_netpair,
dup_netpair = insert (nI, nE) ([fst dup_rl], snd dup_rl) dup_netpair,
safeIs = safeIs,
safeEs = safeEs,
unsafeEs = unsafeEs,
swrappers = swrappers,
uwrappers = uwrappers,
safe0_netpair = safe0_netpair,
safep_netpair = safep_netpair,
extra_netpair = insert' (the_default 1 w) (nI, nE) ([th], []) extra_netpair}
end;
fun add_unsafe_elim w r
(cs as CS {safeIs, safeEs, unsafeIs, unsafeEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, unsafe_netpair, dup_netpair, extra_netpair}) =
if Item_Net.member unsafeEs r then cs
else
let
val (th, rl, dup_rl) = r;
val nI = Item_Net.length unsafeIs;
val nE = Item_Net.length unsafeEs + 1;
in
CS
{unsafeEs = Item_Net.update r unsafeEs,
unsafe_netpair = insert (nI, nE) ([], [fst rl]) unsafe_netpair,
dup_netpair = insert (nI, nE) ([], [fst dup_rl]) dup_netpair,
safeIs = safeIs,
safeEs = safeEs,
unsafeIs = unsafeIs,
swrappers = swrappers,
uwrappers = uwrappers,
safe0_netpair = safe0_netpair,
safep_netpair = safep_netpair,
extra_netpair = insert' (the_default 1 w) (nI, nE) ([], [th]) extra_netpair}
end;
fun trim_context (th, (th1, ths1), (th2, ths2)) =
(Thm.trim_context th,
(Thm.trim_context th1, map Thm.trim_context ths1),
(Thm.trim_context th2, map Thm.trim_context ths2));
fun addSI w ctxt th (cs as CS {safeIs, ...}) =
let
val th' = flat_rule ctxt th;
val rl = (th', swapify [th']);
val r = trim_context (th, rl, rl);
val _ =
warn_rules ctxt "Ignoring duplicate safe introduction (intro!)\n" safeIs r orelse
warn_claset ctxt r cs;
in add_safe_intro w r cs end;
fun addSE w ctxt th (cs as CS {safeEs, ...}) =
let
val _ = has_fewer_prems 1 th andalso bad_thm ctxt "Ill-formed elimination rule" th;
val th' = classical_rule ctxt (flat_rule ctxt th);
val rl = (th', []);
val r = trim_context (th, rl, rl);
val _ =
warn_rules ctxt "Ignoring duplicate safe elimination (elim!)\n" safeEs r orelse
warn_claset ctxt r cs;
in add_safe_elim w r cs end;
fun addSD w ctxt th = addSE w ctxt (make_elim ctxt th);
fun addI w ctxt th (cs as CS {unsafeIs, ...}) =
let
val th' = flat_rule ctxt th;
val dup_th' = dup_intr th' handle THM _ => bad_thm ctxt "Ill-formed introduction rule" th;
val r = trim_context (th, (th', swapify [th']), (dup_th', swapify [dup_th']));
val _ =
warn_rules ctxt "Ignoring duplicate introduction (intro)\n" unsafeIs r orelse
warn_claset ctxt r cs;
in add_unsafe_intro w r cs end;
fun addE w ctxt th (cs as CS {unsafeEs, ...}) =
let
val _ = has_fewer_prems 1 th andalso bad_thm ctxt "Ill-formed elimination rule" th;
val th' = classical_rule ctxt (flat_rule ctxt th);
val dup_th' = dup_elim ctxt th' handle THM _ => bad_thm ctxt "Ill-formed elimination rule" th;
val r = trim_context (th, (th', []), (dup_th', []));
val _ =
warn_rules ctxt "Ignoring duplicate elimination (elim)\n" unsafeEs r orelse
warn_claset ctxt r cs;
in add_unsafe_elim w r cs end;
fun addD w ctxt th = addE w ctxt (make_elim ctxt th);
local
fun del_safe_intro (r: rule)
(CS {safeIs, safeEs, unsafeIs, unsafeEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, unsafe_netpair, dup_netpair, extra_netpair}) =
let
val (th, rl, _) = r;
val (safe0_rls, safep_rls) = List.partition (Thm.no_prems o fst) [rl];
in
CS
{safe0_netpair = delete (map fst safe0_rls, maps snd safe0_rls) safe0_netpair,
safep_netpair = delete (map fst safep_rls, maps snd safep_rls) safep_netpair,
safeIs = Item_Net.remove r safeIs,
safeEs = safeEs,
unsafeIs = unsafeIs,
unsafeEs = unsafeEs,
swrappers = swrappers,
uwrappers = uwrappers,
unsafe_netpair = unsafe_netpair,
dup_netpair = dup_netpair,
extra_netpair = delete ([th], []) extra_netpair}
end;
fun del_safe_elim (r: rule)
(CS {safeIs, safeEs, unsafeIs, unsafeEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, unsafe_netpair, dup_netpair, extra_netpair}) =
let
val (th, rl, _) = r;
val (safe0_rls, safep_rls) = List.partition (fn (rl, _) => Thm.nprems_of rl = 1) [rl];
in
CS
{safe0_netpair = delete ([], map fst safe0_rls) safe0_netpair,
safep_netpair = delete ([], map fst safep_rls) safep_netpair,
safeIs = safeIs,
safeEs = Item_Net.remove r safeEs,
unsafeIs = unsafeIs,
unsafeEs = unsafeEs,
swrappers = swrappers,
uwrappers = uwrappers,
unsafe_netpair = unsafe_netpair,
dup_netpair = dup_netpair,
extra_netpair = delete ([], [th]) extra_netpair}
end;
fun del_unsafe_intro (r as (th, (th', swapped_th'), (dup_th', swapped_dup_th')))
(CS {safeIs, safeEs, unsafeIs, unsafeEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, unsafe_netpair, dup_netpair, extra_netpair}) =
CS
{unsafe_netpair = delete ([th'], swapped_th') unsafe_netpair,
dup_netpair = delete ([dup_th'], swapped_dup_th') dup_netpair,
safeIs = safeIs,
safeEs = safeEs,
unsafeIs = Item_Net.remove r unsafeIs,
unsafeEs = unsafeEs,
swrappers = swrappers,
uwrappers = uwrappers,
safe0_netpair = safe0_netpair,
safep_netpair = safep_netpair,
extra_netpair = delete ([th], []) extra_netpair};
fun del_unsafe_elim (r as (th, (th', _), (dup_th', _)))
(CS {safeIs, safeEs, unsafeIs, unsafeEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, unsafe_netpair, dup_netpair, extra_netpair}) =
CS
{unsafe_netpair = delete ([], [th']) unsafe_netpair,
dup_netpair = delete ([], [dup_th']) dup_netpair,
safeIs = safeIs,
safeEs = safeEs,
unsafeIs = unsafeIs,
unsafeEs = Item_Net.remove r unsafeEs,
swrappers = swrappers,
uwrappers = uwrappers,
safe0_netpair = safe0_netpair,
safep_netpair = safep_netpair,
extra_netpair = delete ([], [th]) extra_netpair};
fun del f rules th cs =
fold f (Item_Net.lookup rules (th, (th, []), (th, []))) cs;
in
fun delrule ctxt th (cs as CS {safeIs, safeEs, unsafeIs, unsafeEs, ...}) =
let
val th' = Tactic.make_elim th;
val r = (th, (th, []), (th, []));
val r' = (th', (th', []), (th', []));
in
if Item_Net.member safeIs r orelse Item_Net.member safeEs r orelse
Item_Net.member unsafeIs r orelse Item_Net.member unsafeEs r orelse
Item_Net.member safeEs r' orelse Item_Net.member unsafeEs r'
then
cs
|> del del_safe_intro safeIs th
|> del del_safe_elim safeEs th
|> del del_safe_elim safeEs th'
|> del del_unsafe_intro unsafeIs th
|> del del_unsafe_elim unsafeEs th
|> del del_unsafe_elim unsafeEs th'
else (warn_thm ctxt "Undeclared classical rule\n" th; cs)
end;
end;
fun map_swrappers f
(CS {safeIs, safeEs, unsafeIs, unsafeEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, unsafe_netpair, dup_netpair, extra_netpair}) =
CS {safeIs = safeIs, safeEs = safeEs, unsafeIs = unsafeIs, unsafeEs = unsafeEs,
swrappers = f swrappers, uwrappers = uwrappers,
safe0_netpair = safe0_netpair, safep_netpair = safep_netpair,
unsafe_netpair = unsafe_netpair, dup_netpair = dup_netpair, extra_netpair = extra_netpair};
fun map_uwrappers f
(CS {safeIs, safeEs, unsafeIs, unsafeEs, swrappers, uwrappers,
safe0_netpair, safep_netpair, unsafe_netpair, dup_netpair, extra_netpair}) =
CS {safeIs = safeIs, safeEs = safeEs, unsafeIs = unsafeIs, unsafeEs = unsafeEs,
swrappers = swrappers, uwrappers = f uwrappers,
safe0_netpair = safe0_netpair, safep_netpair = safep_netpair,
unsafe_netpair = unsafe_netpair, dup_netpair = dup_netpair, extra_netpair = extra_netpair};
fun merge_thms add thms1 thms2 =
fold_rev (fn thm => if Item_Net.member thms1 thm then I else add thm) (Item_Net.content thms2);
fun merge_cs (cs as CS {safeIs, safeEs, unsafeIs, unsafeEs, ...},
cs' as CS {safeIs = safeIs2, safeEs = safeEs2, unsafeIs = unsafeIs2, unsafeEs = unsafeEs2,
swrappers, uwrappers, ...}) =
if pointer_eq (cs, cs') then cs
else
cs
|> merge_thms (add_safe_intro NONE) safeIs safeIs2
|> merge_thms (add_safe_elim NONE) safeEs safeEs2
|> merge_thms (add_unsafe_intro NONE) unsafeIs unsafeIs2
|> merge_thms (add_unsafe_elim NONE) unsafeEs unsafeEs2
|> map_swrappers (fn ws => AList.merge (op =) (K true) (ws, swrappers))
|> map_uwrappers (fn ws => AList.merge (op =) (K true) (ws, uwrappers));
structure Claset = Generic_Data
(
type T = claset;
val empty = empty_cs;
val merge = merge_cs;
);
val claset_of = Claset.get o Context.Proof;
val rep_claset_of = rep_cs o claset_of;
val get_cs = Claset.get;
val map_cs = Claset.map;
fun map_theory_claset f thy =
let
val ctxt' = f (Proof_Context.init_global thy);
val thy' = Proof_Context.theory_of ctxt';
in Context.theory_map (Claset.map (K (claset_of ctxt'))) thy' end;
fun map_claset f = Context.proof_map (map_cs f);
fun put_claset cs = map_claset (K cs);
fun print_claset ctxt =
let
val {safeIs, safeEs, unsafeIs, unsafeEs, swrappers, uwrappers, ...} = rep_claset_of ctxt;
val pretty_thms = map (Thm.pretty_thm_item ctxt o #1) o Item_Net.content;
in
[Pretty.big_list "safe introduction rules (intro!):" (pretty_thms safeIs),
Pretty.big_list "introduction rules (intro):" (pretty_thms unsafeIs),
Pretty.big_list "safe elimination rules (elim!):" (pretty_thms safeEs),
Pretty.big_list "elimination rules (elim):" (pretty_thms unsafeEs),
Pretty.strs ("safe wrappers:" :: map #1 swrappers),
Pretty.strs ("unsafe wrappers:" :: map #1 uwrappers)]
|> Pretty.writeln_chunks
end;
fun decl f (ctxt, ths) = map_claset (fold_rev (f ctxt) ths) ctxt;
val op addSIs = decl (addSI NONE);
val op addSEs = decl (addSE NONE);
val op addSDs = decl (addSD NONE);
val op addIs = decl (addI NONE);
val op addEs = decl (addE NONE);
val op addDs = decl (addD NONE);
val op delrules = decl delrule;
fun appSWrappers ctxt = fold (fn (_, w) => w ctxt) (#swrappers (rep_claset_of ctxt));
fun appWrappers ctxt = fold (fn (_, w) => w ctxt) (#uwrappers (rep_claset_of ctxt));
fun update_warn msg (p as (key : string, _)) xs =
(if AList.defined (op =) xs key then warning msg else (); AList.update (op =) p xs);
fun delete_warn msg (key : string) xs =
if AList.defined (op =) xs key then AList.delete (op =) key xs
else (warning msg; xs);
fun ctxt addSWrapper new_swrapper = ctxt |> map_claset
(map_swrappers (update_warn ("Overwriting safe wrapper " ^ fst new_swrapper) new_swrapper));
fun ctxt addWrapper new_uwrapper = ctxt |> map_claset
(map_uwrappers (update_warn ("Overwriting unsafe wrapper " ^ fst new_uwrapper) new_uwrapper));
fun ctxt delSWrapper name = ctxt |> map_claset
(map_swrappers (delete_warn ("No such safe wrapper in claset: " ^ name) name));
fun ctxt delWrapper name = ctxt |> map_claset
(map_uwrappers (delete_warn ("No such unsafe wrapper in claset: " ^ name) name));
fun ctxt addSbefore (name, tac1) =
ctxt addSWrapper (name, fn ctxt => fn tac2 => tac1 ctxt ORELSE' tac2);
fun ctxt addSafter (name, tac2) =
ctxt addSWrapper (name, fn ctxt => fn tac1 => tac1 ORELSE' tac2 ctxt);
fun ctxt addbefore (name, tac1) =
ctxt addWrapper (name, fn ctxt => fn tac2 => tac1 ctxt APPEND' tac2);
fun ctxt addafter (name, tac2) =
ctxt addWrapper (name, fn ctxt => fn tac1 => tac1 APPEND' tac2 ctxt);
fun ctxt addD2 (name, thm) =
ctxt addafter (name, fn ctxt' => dresolve_tac ctxt' [thm] THEN' assume_tac ctxt');
fun ctxt addE2 (name, thm) =
ctxt addafter (name, fn ctxt' => eresolve_tac ctxt' [thm] THEN' assume_tac ctxt');
fun ctxt addSD2 (name, thm) =
ctxt addSafter (name, fn ctxt' => dmatch_tac ctxt' [thm] THEN' eq_assume_tac);
fun ctxt addSE2 (name, thm) =
ctxt addSafter (name, fn ctxt' => ematch_tac ctxt' [thm] THEN' eq_assume_tac);
fun safe_step_tac ctxt =
let val {safe0_netpair, safep_netpair, ...} = rep_claset_of ctxt in
appSWrappers ctxt
(FIRST'
[eq_assume_tac,
eq_mp_tac ctxt,
bimatch_from_nets_tac ctxt safe0_netpair,
FIRST' (map (fn tac => tac ctxt) Data.hyp_subst_tacs),
bimatch_from_nets_tac ctxt safep_netpair])
end;
fun safe_steps_tac ctxt =
REPEAT_DETERM1 o (fn i => COND (has_fewer_prems i) no_tac (safe_step_tac ctxt i));
fun safe_tac ctxt = REPEAT_DETERM1 (FIRSTGOAL (safe_steps_tac ctxt));
fun nsubgoalsP n (k, brl) = (subgoals_of_brl brl = n);
fun n_bimatch_from_nets_tac ctxt n =
biresolution_from_nets_tac ctxt (order_list o filter (nsubgoalsP n)) true;
fun eq_contr_tac ctxt i = ematch_tac ctxt [Data.not_elim] i THEN eq_assume_tac i;
fun eq_assume_contr_tac ctxt = eq_assume_tac ORELSE' eq_contr_tac ctxt;
fun bimatch2_tac ctxt netpair i =
n_bimatch_from_nets_tac ctxt 2 netpair i THEN
(eq_assume_contr_tac ctxt i ORELSE eq_assume_contr_tac ctxt (i + 1));
fun clarify_step_tac ctxt =
let val {safe0_netpair, safep_netpair, ...} = rep_claset_of ctxt in
appSWrappers ctxt
(FIRST'
[eq_assume_contr_tac ctxt,
bimatch_from_nets_tac ctxt safe0_netpair,
FIRST' (map (fn tac => tac ctxt) Data.hyp_subst_tacs),
n_bimatch_from_nets_tac ctxt 1 safep_netpair,
bimatch2_tac ctxt safep_netpair])
end;
fun clarify_tac ctxt = SELECT_GOAL (REPEAT_DETERM (clarify_step_tac ctxt 1));
fun inst0_step_tac ctxt =
assume_tac ctxt APPEND'
contr_tac ctxt APPEND'
biresolve_from_nets_tac ctxt (#safe0_netpair (rep_claset_of ctxt));
fun instp_step_tac ctxt =
biresolve_from_nets_tac ctxt (#safep_netpair (rep_claset_of ctxt));
fun inst_step_tac ctxt = inst0_step_tac ctxt APPEND' instp_step_tac ctxt;
fun unsafe_step_tac ctxt =
biresolve_from_nets_tac ctxt (#unsafe_netpair (rep_claset_of ctxt));
fun step_tac ctxt i =
safe_tac ctxt ORELSE appWrappers ctxt (inst_step_tac ctxt ORELSE' unsafe_step_tac ctxt) i;
fun slow_step_tac ctxt i =
safe_tac ctxt ORELSE appWrappers ctxt (inst_step_tac ctxt APPEND' unsafe_step_tac ctxt) i;
fun fast_tac ctxt =
Object_Logic.atomize_prems_tac ctxt THEN' SELECT_GOAL (DEPTH_SOLVE (step_tac ctxt 1));
fun best_tac ctxt =
Object_Logic.atomize_prems_tac ctxt THEN'
SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, Data.sizef) (step_tac ctxt 1));
fun first_best_tac ctxt =
Object_Logic.atomize_prems_tac ctxt THEN'
SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, Data.sizef) (FIRSTGOAL (step_tac ctxt)));
fun slow_tac ctxt =
Object_Logic.atomize_prems_tac ctxt THEN'
SELECT_GOAL (DEPTH_SOLVE (slow_step_tac ctxt 1));
fun slow_best_tac ctxt =
Object_Logic.atomize_prems_tac ctxt THEN'
SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, Data.sizef) (slow_step_tac ctxt 1));
val weight_ASTAR = 5;
fun astar_tac ctxt =
Object_Logic.atomize_prems_tac ctxt THEN'
SELECT_GOAL
(ASTAR (has_fewer_prems 1, fn lev => fn thm => Data.sizef thm + weight_ASTAR * lev)
(step_tac ctxt 1));
fun slow_astar_tac ctxt =
Object_Logic.atomize_prems_tac ctxt THEN'
SELECT_GOAL
(ASTAR (has_fewer_prems 1, fn lev => fn thm => Data.sizef thm + weight_ASTAR * lev)
(slow_step_tac ctxt 1));
fun dup_step_tac ctxt =
biresolve_from_nets_tac ctxt (#dup_netpair (rep_claset_of ctxt));
local
fun slow_step_tac' ctxt = appWrappers ctxt (instp_step_tac ctxt APPEND' dup_step_tac ctxt);
in
fun depth_tac ctxt m i state = SELECT_GOAL
(safe_steps_tac ctxt 1 THEN_ELSE
(DEPTH_SOLVE (depth_tac ctxt m 1),
inst0_step_tac ctxt 1 APPEND COND (K (m = 0)) no_tac
(slow_step_tac' ctxt 1 THEN DEPTH_SOLVE (depth_tac ctxt (m - 1) 1)))) i state;
end;
fun safe_depth_tac ctxt m = SUBGOAL (fn (prem, i) =>
let
val deti =
if exists_subterm (fn Var _ => true | _ => false) prem then DETERM else I;
in
SELECT_GOAL (TRY (safe_tac ctxt) THEN DEPTH_SOLVE (deti (depth_tac ctxt m 1))) i
end);
fun deepen_tac ctxt = DEEPEN (2, 10) (safe_depth_tac ctxt);
fun attrib f =
Thm.declaration_attribute (fn th => fn context =>
map_cs (f (Context.proof_of context) th) context);
val safe_elim = attrib o addSE;
val safe_intro = attrib o addSI;
val safe_dest = attrib o addSD;
val unsafe_elim = attrib o addE;
val unsafe_intro = attrib o addI;
val unsafe_dest = attrib o addD;
val rule_del =
Thm.declaration_attribute (fn th => fn context =>
context
|> map_cs (delrule (Context.proof_of context) th)
|> Thm.attribute_declaration Context_Rules.rule_del th);
val introN = "intro";
val elimN = "elim";
val destN = "dest";
val _ =
Theory.setup
(Attrib.setup \<^binding>‹swapped› (Scan.succeed swapped)
"classical swap of introduction rule" #>
Attrib.setup \<^binding>‹dest› (Context_Rules.add safe_dest unsafe_dest Context_Rules.dest_query)
"declaration of Classical destruction rule" #>
Attrib.setup \<^binding>‹elim› (Context_Rules.add safe_elim unsafe_elim Context_Rules.elim_query)
"declaration of Classical elimination rule" #>
Attrib.setup \<^binding>‹intro› (Context_Rules.add safe_intro unsafe_intro Context_Rules.intro_query)
"declaration of Classical introduction rule" #>
Attrib.setup \<^binding>‹rule› (Scan.lift Args.del >> K rule_del)
"remove declaration of intro/elim/dest rule");
local
fun some_rule_tac ctxt facts = SUBGOAL (fn (goal, i) =>
let
val [rules1, rules2, rules4] = Context_Rules.find_rules ctxt false facts goal;
val {extra_netpair, ...} = rep_claset_of ctxt;
val rules3 = Context_Rules.find_rules_netpair ctxt true facts goal extra_netpair;
val rules = rules1 @ rules2 @ rules3 @ rules4;
val ruleq = Drule.multi_resolves (SOME ctxt) facts rules;
val _ = Method.trace ctxt rules;
in
fn st => Seq.maps (fn rule => resolve_tac ctxt [rule] i st) ruleq
end)
THEN_ALL_NEW Goal.norm_hhf_tac ctxt;
in
fun rule_tac ctxt [] facts = some_rule_tac ctxt facts
| rule_tac ctxt rules facts = Method.rule_tac ctxt rules facts;
fun standard_tac ctxt facts =
HEADGOAL (some_rule_tac ctxt facts) ORELSE
Class.standard_intro_classes_tac ctxt facts;
end;
val cla_modifiers =
[Args.$$$ destN -- Args.bang_colon >> K (Method.modifier (safe_dest NONE) ⌂),
Args.$$$ destN -- Args.colon >> K (Method.modifier (unsafe_dest NONE) ⌂),
Args.$$$ elimN -- Args.bang_colon >> K (Method.modifier (safe_elim NONE) ⌂),
Args.$$$ elimN -- Args.colon >> K (Method.modifier (unsafe_elim NONE) ⌂),
Args.$$$ introN -- Args.bang_colon >> K (Method.modifier (safe_intro NONE) ⌂),
Args.$$$ introN -- Args.colon >> K (Method.modifier (unsafe_intro NONE) ⌂),
Args.del -- Args.colon >> K (Method.modifier rule_del ⌂)];
fun cla_method tac = Method.sections cla_modifiers >> K (SIMPLE_METHOD o tac);
fun cla_method' tac = Method.sections cla_modifiers >> K (SIMPLE_METHOD' o tac);
val _ =
Theory.setup
(Method.setup \<^binding>‹standard› (Scan.succeed (METHOD o standard_tac))
"standard proof step: classical intro/elim rule or class introduction" #>
Method.setup \<^binding>‹rule›
(Attrib.thms >> (fn rules => fn ctxt => METHOD (HEADGOAL o rule_tac ctxt rules)))
"apply some intro/elim rule (potentially classical)" #>
Method.setup \<^binding>‹contradiction›
(Scan.succeed (fn ctxt => Method.rule ctxt [Data.not_elim, Drule.rotate_prems 1 Data.not_elim]))
"proof by contradiction" #>
Method.setup \<^binding>‹clarify› (cla_method' (CHANGED_PROP oo clarify_tac))
"repeatedly apply safe steps" #>
Method.setup \<^binding>‹fast› (cla_method' fast_tac) "classical prover (depth-first)" #>
Method.setup \<^binding>‹slow› (cla_method' slow_tac) "classical prover (slow depth-first)" #>
Method.setup \<^binding>‹best› (cla_method' best_tac) "classical prover (best-first)" #>
Method.setup \<^binding>‹deepen›
(Scan.lift (Scan.optional Parse.nat 4) --| Method.sections cla_modifiers
>> (fn n => fn ctxt => SIMPLE_METHOD' (deepen_tac ctxt n)))
"classical prover (iterative deepening)" #>
Method.setup \<^binding>‹safe› (cla_method (CHANGED_PROP o safe_tac))
"classical prover (apply safe rules)" #>
Method.setup \<^binding>‹safe_step› (cla_method' safe_step_tac)
"single classical step (safe rules)" #>
Method.setup \<^binding>‹inst_step› (cla_method' inst_step_tac)
"single classical step (safe rules, allow instantiations)" #>
Method.setup \<^binding>‹step› (cla_method' step_tac)
"single classical step (safe and unsafe rules)" #>
Method.setup \<^binding>‹slow_step› (cla_method' slow_step_tac)
"single classical step (safe and unsafe rules, allow backtracking)" #>
Method.setup \<^binding>‹clarify_step› (cla_method' clarify_step_tac)
"single classical step (safe rules, without splitting)");
val _ =
Outer_Syntax.command \<^command_keyword>‹print_claset› "print context of Classical Reasoner"
(Scan.succeed (Toplevel.keep (print_claset o Toplevel.context_of)));
end;