Theory Ordinals

(*  Title:      HOL/Induct/Ordinals.thy
    Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
*)

section ‹Ordinals›

theory Ordinals
imports Main
begin

text ‹
  Some basic definitions of ordinal numbers.  Draws an Agda
  development (in Martin-Löf type theory) by Peter Hancock (see
  🌐‹http://www.dcs.ed.ac.uk/home/pgh/chat.html›).
›

datatype ordinal =
    Zero
  | Succ ordinal
  | Limit "nat  ordinal"

primrec pred :: "ordinal  nat  ordinal option"
where
  "pred Zero n = None"
| "pred (Succ a) n = Some a"
| "pred (Limit f) n = Some (f n)"

abbreviation (input) iter :: "('a  'a)  nat  ('a  'a)"
  where "iter f n  f ^^ n"

definition OpLim :: "(nat  (ordinal  ordinal))  (ordinal  ordinal)"
  where "OpLim F a = Limit (λn. F n a)"

definition OpItw :: "(ordinal  ordinal)  (ordinal  ordinal)"  ()
  where "f = OpLim (iter f)"

primrec cantor :: "ordinal  ordinal  ordinal"
where
  "cantor a Zero = Succ a"
| "cantor a (Succ b) = (λx. cantor x b) a"
| "cantor a (Limit f) = Limit (λn. cantor a (f n))"

primrec Nabla :: "(ordinal  ordinal)  (ordinal  ordinal)"  ()
where
  "f Zero = f Zero"
| "f (Succ a) = f (Succ (f a))"
| "f (Limit h) = Limit (λn. f (h n))"

definition deriv :: "(ordinal  ordinal)  (ordinal  ordinal)"
  where "deriv f = (f)"

primrec veblen :: "ordinal  ordinal  ordinal"
where
  "veblen Zero = (OpLim (iter (cantor Zero)))"
| "veblen (Succ a) = (OpLim (iter (veblen a)))"
| "veblen (Limit f) = (OpLim (λn. veblen (f n)))"

definition "veb a = veblen a Zero"
definition "ε0 = veb Zero"
definition "Γ0 = Limit (λn. iter veb n Zero)"

end