Theory HOL.Num
section ‹Binary Numerals›
theory Num
imports BNF_Least_Fixpoint Transfer
begin
subsection ‹The ‹num› type›
datatype num = One | Bit0 num | Bit1 num
text ‹Increment function for type \<^typ>‹num››
primrec inc :: ‹num ⇒ num›
where
‹inc One = Bit0 One›
| ‹inc (Bit0 x) = Bit1 x›
| ‹inc (Bit1 x) = Bit0 (inc x)›
text ‹Converting between type \<^typ>‹num› and type \<^typ>‹nat››
primrec nat_of_num :: ‹num ⇒ nat›
where
‹nat_of_num One = Suc 0›
| ‹nat_of_num (Bit0 x) = nat_of_num x + nat_of_num x›
| ‹nat_of_num (Bit1 x) = Suc (nat_of_num x + nat_of_num x)›
primrec num_of_nat :: ‹nat ⇒ num›
where
‹num_of_nat 0 = One›
| ‹num_of_nat (Suc n) = (if 0 < n then inc (num_of_nat n) else One)›
lemma nat_of_num_pos: ‹0 < nat_of_num x›
by (induct x) simp_all
lemma nat_of_num_neq_0: ‹ nat_of_num x ≠ 0›
by (induct x) simp_all
lemma nat_of_num_inc: ‹nat_of_num (inc x) = Suc (nat_of_num x)›
by (induct x) simp_all
lemma num_of_nat_double: ‹0 < n ⟹ num_of_nat (n + n) = Bit0 (num_of_nat n)›
by (induct n) simp_all
text ‹Type \<^typ>‹num› is isomorphic to the strictly positive natural numbers.›
lemma nat_of_num_inverse: ‹num_of_nat (nat_of_num x) = x›
by (induct x) (simp_all add: num_of_nat_double nat_of_num_pos)
lemma num_of_nat_inverse: ‹0 < n ⟹ nat_of_num (num_of_nat n) = n›
by (induct n) (simp_all add: nat_of_num_inc)
lemma num_eq_iff: ‹x = y ⟷ nat_of_num x = nat_of_num y›
apply safe
apply (drule arg_cong [where f=num_of_nat])
apply (simp add: nat_of_num_inverse)
done
lemma num_induct [case_names One inc]:
fixes P :: ‹num ⇒ bool›
assumes One: ‹P One›
and inc: ‹⋀x. P x ⟹ P (inc x)›
shows ‹P x›
proof -
obtain n where n: ‹Suc n = nat_of_num x›
by (cases ‹nat_of_num x›) (simp_all add: nat_of_num_neq_0)
have ‹P (num_of_nat (Suc n))›
proof (induct n)
case 0
from One show ?case by simp
next
case (Suc n)
then have ‹P (inc (num_of_nat (Suc n)))› by (rule inc)
then show ‹P (num_of_nat (Suc (Suc n)))› by simp
qed
with n show ‹P x›
by (simp add: nat_of_num_inverse)
qed
text ‹
From now on, there are two possible models for \<^typ>‹num›: as positive
naturals (rule ‹num_induct›) and as digit representation (rules
‹num.induct›, ‹num.cases›).
›
subsection ‹Numeral operations›
instantiation num :: ‹{plus,times,linorder}›
begin
definition [code del]: ‹m + n = num_of_nat (nat_of_num m + nat_of_num n)›
definition [code del]: ‹m * n = num_of_nat (nat_of_num m * nat_of_num n)›
definition [code del]: ‹m ≤ n ⟷ nat_of_num m ≤ nat_of_num n›
definition [code del]: ‹m < n ⟷ nat_of_num m < nat_of_num n›
instance
by standard (auto simp add: less_num_def less_eq_num_def num_eq_iff)
end
lemma nat_of_num_add: ‹nat_of_num (x + y) = nat_of_num x + nat_of_num y›
unfolding plus_num_def
by (intro num_of_nat_inverse add_pos_pos nat_of_num_pos)
lemma nat_of_num_mult: ‹nat_of_num (x * y) = nat_of_num x * nat_of_num y›
unfolding times_num_def
by (intro num_of_nat_inverse mult_pos_pos nat_of_num_pos)
lemma add_num_simps [simp, code]:
‹One + One = Bit0 One›
‹One + Bit0 n = Bit1 n›
‹One + Bit1 n = Bit0 (n + One)›
‹Bit0 m + One = Bit1 m›
‹Bit0 m + Bit0 n = Bit0 (m + n)›
‹Bit0 m + Bit1 n = Bit1 (m + n)›
‹Bit1 m + One = Bit0 (m + One)›
‹Bit1 m + Bit0 n = Bit1 (m + n)›
‹Bit1 m + Bit1 n = Bit0 (m + n + One)›
by (simp_all add: num_eq_iff nat_of_num_add)
lemma mult_num_simps [simp, code]:
‹m * One = m›
‹One * n = n›
‹Bit0 m * Bit0 n = Bit0 (Bit0 (m * n))›
‹Bit0 m * Bit1 n = Bit0 (m * Bit1 n)›
‹Bit1 m * Bit0 n = Bit0 (Bit1 m * n)›
‹Bit1 m * Bit1 n = Bit1 (m + n + Bit0 (m * n))›
by (simp_all add: num_eq_iff nat_of_num_add nat_of_num_mult distrib_right distrib_left)
lemma eq_num_simps:
‹One = One ⟷ True›
‹One = Bit0 n ⟷ False›
‹One = Bit1 n ⟷ False›
‹Bit0 m = One ⟷ False›
‹Bit1 m = One ⟷ False›
‹Bit0 m = Bit0 n ⟷ m = n›
‹Bit0 m = Bit1 n ⟷ False›
‹Bit1 m = Bit0 n ⟷ False›
‹Bit1 m = Bit1 n ⟷ m = n›
by simp_all
lemma le_num_simps [simp, code]:
‹One ≤ n ⟷ True›
‹Bit0 m ≤ One ⟷ False›
‹Bit1 m ≤ One ⟷ False›
‹Bit0 m ≤ Bit0 n ⟷ m ≤ n›
‹Bit0 m ≤ Bit1 n ⟷ m ≤ n›
‹Bit1 m ≤ Bit1 n ⟷ m ≤ n›
‹Bit1 m ≤ Bit0 n ⟷ m < n›
using nat_of_num_pos [of n] nat_of_num_pos [of m]
by (auto simp add: less_eq_num_def less_num_def)
lemma less_num_simps [simp, code]:
‹m < One ⟷ False›
‹One < Bit0 n ⟷ True›
‹One < Bit1 n ⟷ True›
‹Bit0 m < Bit0 n ⟷ m < n›
‹Bit0 m < Bit1 n ⟷ m ≤ n›
‹Bit1 m < Bit1 n ⟷ m < n›
‹Bit1 m < Bit0 n ⟷ m < n›
using nat_of_num_pos [of n] nat_of_num_pos [of m]
by (auto simp add: less_eq_num_def less_num_def)
lemma le_num_One_iff: ‹x ≤ One ⟷ x = One›
by (simp add: antisym_conv)
text ‹Rules using ‹One› and ‹inc› as constructors.›
lemma add_One: ‹x + One = inc x›
by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc)
lemma add_One_commute: ‹One + n = n + One›
by (induct n) simp_all
lemma add_inc: ‹x + inc y = inc (x + y)›
by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc)
lemma mult_inc: ‹x * inc y = x * y + x›
by (simp add: num_eq_iff nat_of_num_mult nat_of_num_add nat_of_num_inc)
text ‹The \<^const>‹num_of_nat› conversion.›
lemma num_of_nat_One: ‹n ≤ 1 ⟹ num_of_nat n = One›
by (cases n) simp_all
lemma num_of_nat_plus_distrib:
‹0 < m ⟹ 0 < n ⟹ num_of_nat (m + n) = num_of_nat m + num_of_nat n›
by (induct n) (auto simp add: add_One add_One_commute add_inc)
text ‹A double-and-decrement function.›
primrec BitM :: ‹num ⇒ num›
where
‹BitM One = One›
| ‹BitM (Bit0 n) = Bit1 (BitM n)›
| ‹BitM (Bit1 n) = Bit1 (Bit0 n)›
lemma BitM_plus_one: ‹BitM n + One = Bit0 n›
by (induct n) simp_all
lemma one_plus_BitM: ‹One + BitM n = Bit0 n›
unfolding add_One_commute BitM_plus_one ..
lemma BitM_inc_eq:
‹BitM (inc n) = Bit1 n›
by (induction n) simp_all
lemma inc_BitM_eq:
‹inc (BitM n) = Bit0 n›
by (simp add: BitM_plus_one[symmetric] add_One)
text ‹Squaring and exponentiation.›
primrec sqr :: ‹num ⇒ num›
where
‹sqr One = One›
| ‹sqr (Bit0 n) = Bit0 (Bit0 (sqr n))›
| ‹sqr (Bit1 n) = Bit1 (Bit0 (sqr n + n))›
primrec pow :: ‹num ⇒ num ⇒ num›
where
‹pow x One = x›
| ‹pow x (Bit0 y) = sqr (pow x y)›
| ‹pow x (Bit1 y) = sqr (pow x y) * x›
lemma nat_of_num_sqr: ‹nat_of_num (sqr x) = nat_of_num x * nat_of_num x›
by (induct x) (simp_all add: algebra_simps nat_of_num_add)
lemma sqr_conv_mult: ‹sqr x = x * x›
by (simp add: num_eq_iff nat_of_num_sqr nat_of_num_mult)
lemma num_double [simp]:
‹Bit0 num.One * n = Bit0 n›
by (simp add: num_eq_iff nat_of_num_mult)
subsection ‹Binary numerals›
text ‹
We embed binary representations into a generic algebraic
structure using ‹numeral›.
›
class numeral = one + semigroup_add
begin
primrec numeral :: ‹num ⇒ 'a›
where
numeral_One: ‹numeral One = 1›
| numeral_Bit0: ‹numeral (Bit0 n) = numeral n + numeral n›
| numeral_Bit1: ‹numeral (Bit1 n) = numeral n + numeral n + 1›
lemma numeral_code [code]:
‹numeral One = 1›
‹numeral (Bit0 n) = (let m = numeral n in m + m)›
‹numeral (Bit1 n) = (let m = numeral n in m + m + 1)›
by (simp_all add: Let_def)
lemma one_plus_numeral_commute: ‹1 + numeral x = numeral x + 1›
proof (induct x)
case One
then show ?case by simp
next
case Bit0
then show ?case by (simp add: add.assoc [symmetric]) (simp add: add.assoc)
next
case Bit1
then show ?case by (simp add: add.assoc [symmetric]) (simp add: add.assoc)
qed
lemma numeral_inc: ‹numeral (inc x) = numeral x + 1›
proof (induct x)
case One
then show ?case by simp
next
case Bit0
then show ?case by simp
next
case (Bit1 x)
have ‹numeral x + (1 + numeral x) + 1 = numeral x + (numeral x + 1) + 1›
by (simp only: one_plus_numeral_commute)
with Bit1 show ?case
by (simp add: add.assoc)
qed
declare numeral.simps [simp del]
abbreviation ‹Numeral1 ≡ numeral One›
declare numeral_One [code_post]
end
text ‹Numeral syntax.›
syntax
"_Numeral" :: ‹num_const ⇒ 'a› (‹(‹open_block notation=‹literal number››_)›)
ML_file ‹Tools/numeral.ML›
parse_translation ‹
let
fun numeral_tr [(c as Const (\<^syntax_const>‹_constrain›, _)) $ t $ u] =
c $ numeral_tr [t] $ u
| numeral_tr [Const (num, _)] =
(Numeral.mk_number_syntax o #value o Lexicon.read_num) num
| numeral_tr ts = raise TERM ("numeral_tr", ts);
in [(\<^syntax_const>‹_Numeral›, K numeral_tr)] end
›
typed_print_translation ‹
let
fun num_tr' ctxt T [n] =
let
val k = Numeral.dest_num_syntax n;
val t' =
Syntax.const \<^syntax_const>‹_Numeral› $
Syntax.free (string_of_int k);
in
(case T of
Type (\<^type_name>‹fun›, [_, T']) =>
if Printer.type_emphasis ctxt T' then
Syntax.const \<^syntax_const>‹_constrain› $ t' $
Syntax_Phases.term_of_typ ctxt T'
else t'
| _ => if T = dummyT then t' else raise Match)
end;
in
[(\<^const_syntax>‹numeral›, num_tr')]
end
›
subsection ‹Class-specific numeral rules›
text ‹\<^const>‹numeral› is a morphism.›
subsubsection ‹Structures with addition: class ‹numeral››
context numeral
begin
lemma numeral_add: ‹numeral (m + n) = numeral m + numeral n›
by (induct n rule: num_induct)
(simp_all only: numeral_One add_One add_inc numeral_inc add.assoc)
lemma numeral_plus_numeral: ‹numeral m + numeral n = numeral (m + n)›
by (rule numeral_add [symmetric])
lemma numeral_plus_one: ‹numeral n + 1 = numeral (n + One)›
using numeral_add [of n One] by (simp add: numeral_One)
lemma one_plus_numeral: ‹1 + numeral n = numeral (One + n)›
using numeral_add [of One n] by (simp add: numeral_One)
lemma one_add_one: ‹1 + 1 = 2›
using numeral_add [of One One] by (simp add: numeral_One)
lemmas add_numeral_special =
numeral_plus_one one_plus_numeral one_add_one
end
subsubsection ‹Structures with negation: class ‹neg_numeral››
class neg_numeral = numeral + group_add
begin
lemma uminus_numeral_One: ‹- Numeral1 = - 1›
by (simp add: numeral_One)
text ‹Numerals form an abelian subgroup.›
inductive is_num :: ‹'a ⇒ bool›
where
‹is_num 1›
| ‹is_num x ⟹ is_num (- x)›
| ‹is_num x ⟹ is_num y ⟹ is_num (x + y)›
lemma is_num_numeral: ‹is_num (numeral k)›
by (induct k) (simp_all add: numeral.simps is_num.intros)
lemma is_num_add_commute: ‹is_num x ⟹ is_num y ⟹ x + y = y + x›
proof(induction x rule: is_num.induct)
case 1
then show ?case
proof (induction y rule: is_num.induct)
case 1
then show ?case by simp
next
case (2 y)
then have ‹y + (1 + - y) + y = y + (- y + 1) + y›
by (simp add: add.assoc)
then have ‹y + (1 + - y) = y + (- y + 1)›
by simp
then show ?case
by (rule add_left_imp_eq[of y])
next
case (3 x y)
then have ‹1 + (x + y) = x + 1 + y›
by (simp add: add.assoc [symmetric])
then show ?case using 3
by (simp add: add.assoc)
qed
next
case (2 x)
then have ‹x + (- x + y) + x = x + (y + - x) + x›
by (simp add: add.assoc)
then have ‹x + (- x + y) = x + (y + - x)›
by simp
then show ?case
by (rule add_left_imp_eq[of x])
next
case (3 x z)
moreover have ‹x + (y + z) = (x + y) + z›
by (simp add: add.assoc[symmetric])
ultimately show ?case
by (simp add: add.assoc)
qed
lemma is_num_add_left_commute: ‹is_num x ⟹ is_num y ⟹ x + (y + z) = y + (x + z)›
by (simp only: add.assoc [symmetric] is_num_add_commute)
lemmas is_num_normalize =
add.assoc is_num_add_commute is_num_add_left_commute
is_num.intros is_num_numeral
minus_add
definition dbl :: ‹'a ⇒ 'a›
where ‹dbl x = x + x›
definition dbl_inc :: ‹'a ⇒ 'a›
where ‹dbl_inc x = x + x + 1›
definition dbl_dec :: ‹'a ⇒ 'a›
where ‹dbl_dec x = x + x - 1›
definition sub :: ‹num ⇒ num ⇒ 'a›
where ‹sub k l = numeral k - numeral l›
lemma numeral_BitM: ‹numeral (BitM n) = numeral (Bit0 n) - 1›
by (simp only: BitM_plus_one [symmetric] numeral_add numeral_One eq_diff_eq)
lemma sub_inc_One_eq:
‹sub (inc n) num.One = numeral n›
by (simp_all add: sub_def diff_eq_eq numeral_inc numeral.numeral_One)
lemma dbl_simps [simp]:
‹dbl (- numeral k) = - dbl (numeral k)›
‹dbl 0 = 0›
‹dbl 1 = 2›
‹dbl (- 1) = - 2›
‹dbl (numeral k) = numeral (Bit0 k)›
by (simp_all add: dbl_def numeral.simps minus_add)
lemma dbl_inc_simps [simp]:
‹dbl_inc (- numeral k) = - dbl_dec (numeral k)›
‹dbl_inc 0 = 1›
‹dbl_inc 1 = 3›
‹dbl_inc (- 1) = - 1›
‹dbl_inc (numeral k) = numeral (Bit1 k)›
by (simp_all add: dbl_inc_def dbl_dec_def numeral.simps numeral_BitM is_num_normalize algebra_simps
del: add_uminus_conv_diff)
lemma dbl_dec_simps [simp]:
‹dbl_dec (- numeral k) = - dbl_inc (numeral k)›
‹dbl_dec 0 = - 1›
‹dbl_dec 1 = 1›
‹dbl_dec (- 1) = - 3›
‹dbl_dec (numeral k) = numeral (BitM k)›
by (simp_all add: dbl_dec_def dbl_inc_def numeral.simps numeral_BitM is_num_normalize)
lemma sub_num_simps [simp]:
‹sub One One = 0›
‹sub One (Bit0 l) = - numeral (BitM l)›
‹sub One (Bit1 l) = - numeral (Bit0 l)›
‹sub (Bit0 k) One = numeral (BitM k)›
‹sub (Bit1 k) One = numeral (Bit0 k)›
‹sub (Bit0 k) (Bit0 l) = dbl (sub k l)›
‹sub (Bit0 k) (Bit1 l) = dbl_dec (sub k l)›
‹sub (Bit1 k) (Bit0 l) = dbl_inc (sub k l)›
‹sub (Bit1 k) (Bit1 l) = dbl (sub k l)›
by (simp_all add: dbl_def dbl_dec_def dbl_inc_def sub_def numeral.simps
numeral_BitM is_num_normalize del: add_uminus_conv_diff add: diff_conv_add_uminus)
lemma add_neg_numeral_simps:
‹numeral m + - numeral n = sub m n›
‹- numeral m + numeral n = sub n m›
‹- numeral m + - numeral n = - (numeral m + numeral n)›
by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize
del: add_uminus_conv_diff add: diff_conv_add_uminus)
lemma add_neg_numeral_special:
‹1 + - numeral m = sub One m›
‹- numeral m + 1 = sub One m›
‹numeral m + - 1 = sub m One›
‹- 1 + numeral n = sub n One›
‹- 1 + - numeral n = - numeral (inc n)›
‹- numeral m + - 1 = - numeral (inc m)›
‹1 + - 1 = 0›
‹- 1 + 1 = 0›
‹- 1 + - 1 = - 2›
by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize right_minus numeral_inc
del: add_uminus_conv_diff add: diff_conv_add_uminus)
lemma diff_numeral_simps:
‹numeral m - numeral n = sub m n›
‹numeral m - - numeral n = numeral (m + n)›
‹- numeral m - numeral n = - numeral (m + n)›
‹- numeral m - - numeral n = sub n m›
by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize
del: add_uminus_conv_diff add: diff_conv_add_uminus)
lemma diff_numeral_special:
‹1 - numeral n = sub One n›
‹numeral m - 1 = sub m One›
‹1 - - numeral n = numeral (One + n)›
‹- numeral m - 1 = - numeral (m + One)›
‹- 1 - numeral n = - numeral (inc n)›
‹numeral m - - 1 = numeral (inc m)›
‹- 1 - - numeral n = sub n One›
‹- numeral m - - 1 = sub One m›
‹1 - 1 = 0›
‹- 1 - 1 = - 2›
‹1 - - 1 = 2›
‹- 1 - - 1 = 0›
by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize numeral_inc
del: add_uminus_conv_diff add: diff_conv_add_uminus)
end
subsubsection ‹Structures with multiplication: class ‹semiring_numeral››
class semiring_numeral = semiring + monoid_mult
begin
subclass numeral ..
lemma numeral_mult: ‹numeral (m * n) = numeral m * numeral n›
by (induct n rule: num_induct)
(simp_all add: numeral_One mult_inc numeral_inc numeral_add distrib_left)
lemma numeral_times_numeral: ‹numeral m * numeral n = numeral (m * n)›
by (rule numeral_mult [symmetric])
lemma mult_2: ‹2 * z = z + z›
by (simp add: one_add_one [symmetric] distrib_right)
lemma mult_2_right: ‹z * 2 = z + z›
by (simp add: one_add_one [symmetric] distrib_left)
lemma left_add_twice:
‹a + (a + b) = 2 * a + b›
by (simp add: mult_2 ac_simps)
lemma numeral_Bit0_eq_double:
‹numeral (Bit0 n) = 2 * numeral n›
by (simp add: mult_2) (simp add: numeral_Bit0)
lemma numeral_Bit1_eq_inc_double:
‹numeral (Bit1 n) = 2 * numeral n + 1›
by (simp add: mult_2) (simp add: numeral_Bit1)
end
subsubsection ‹Structures with a zero: class ‹semiring_1››
context semiring_1
begin
subclass semiring_numeral ..
lemma of_nat_numeral [simp]: ‹of_nat (numeral n) = numeral n›
by (induct n) (simp_all only: numeral.simps numeral_class.numeral.simps of_nat_add of_nat_1)
end
lemma nat_of_num_numeral [code_abbrev]: ‹nat_of_num = numeral›
proof
fix n
have ‹numeral n = nat_of_num n›
by (induct n) (simp_all add: numeral.simps)
then show ‹nat_of_num n = numeral n›
by simp
qed
lemma nat_of_num_code [code]:
‹nat_of_num One = 1›
‹nat_of_num (Bit0 n) = (let m = nat_of_num n in m + m)›
‹nat_of_num (Bit1 n) = (let m = nat_of_num n in Suc (m + m))›
by (simp_all add: Let_def)
subsubsection ‹Equality: class ‹semiring_char_0››
context semiring_char_0
begin
lemma numeral_eq_iff: ‹numeral m = numeral n ⟷ m = n›
by (simp only: of_nat_numeral [symmetric] nat_of_num_numeral [symmetric]
of_nat_eq_iff num_eq_iff)
lemma numeral_eq_one_iff: ‹numeral n = 1 ⟷ n = One›
by (rule numeral_eq_iff [of n One, unfolded numeral_One])
lemma one_eq_numeral_iff: ‹1 = numeral n ⟷ One = n›
by (rule numeral_eq_iff [of One n, unfolded numeral_One])
lemma numeral_neq_zero: ‹numeral n ≠ 0›
by (simp add: of_nat_numeral [symmetric] nat_of_num_numeral [symmetric] nat_of_num_pos)
lemma zero_neq_numeral: ‹0 ≠ numeral n›
unfolding eq_commute [of 0] by (rule numeral_neq_zero)
lemmas eq_numeral_simps [simp] =
numeral_eq_iff
numeral_eq_one_iff
one_eq_numeral_iff
numeral_neq_zero
zero_neq_numeral
end
subsubsection ‹Comparisons: class ‹linordered_nonzero_semiring››
context linordered_nonzero_semiring
begin
lemma numeral_le_iff: ‹numeral m ≤ numeral n ⟷ m ≤ n›
proof -
have ‹of_nat (numeral m) ≤ of_nat (numeral n) ⟷ m ≤ n›
by (simp only: less_eq_num_def nat_of_num_numeral of_nat_le_iff)
then show ?thesis by simp
qed
lemma one_le_numeral: ‹1 ≤ numeral n›
using numeral_le_iff [of One n] by (simp add: numeral_One)
lemma numeral_le_one_iff: ‹numeral n ≤ 1 ⟷ n ≤ One›
using numeral_le_iff [of n One] by (simp add: numeral_One)
lemma numeral_less_iff: ‹numeral m < numeral n ⟷ m < n›
proof -
have ‹of_nat (numeral m) < of_nat (numeral n) ⟷ m < n›
unfolding less_num_def nat_of_num_numeral of_nat_less_iff ..
then show ?thesis by simp
qed
lemma not_numeral_less_one: ‹¬ numeral n < 1›
using numeral_less_iff [of n One] by (simp add: numeral_One)
lemma one_less_numeral_iff: ‹1 < numeral n ⟷ One < n›
using numeral_less_iff [of One n] by (simp add: numeral_One)
lemma zero_le_numeral: ‹0 ≤ numeral n›
using dual_order.trans one_le_numeral zero_le_one by blast
lemma zero_less_numeral: ‹0 < numeral n›
using less_linear not_numeral_less_one order.strict_trans zero_less_one by blast
lemma not_numeral_le_zero: ‹¬ numeral n ≤ 0›
by (simp add: not_le zero_less_numeral)
lemma not_numeral_less_zero: ‹¬ numeral n < 0›
by (simp add: not_less zero_le_numeral)
lemma one_of_nat_le_iff [simp]: ‹1 ≤ of_nat k ⟷ 1 ≤ k›
using of_nat_le_iff [of 1] by simp
lemma numeral_nat_le_iff [simp]: ‹numeral n ≤ of_nat k ⟷ numeral n ≤ k›
using of_nat_le_iff [of ‹numeral n›] by simp
lemma of_nat_le_1_iff [simp]: ‹of_nat k ≤ 1 ⟷ k ≤ 1›
using of_nat_le_iff [of _ 1] by simp
lemma of_nat_le_numeral_iff [simp]: ‹of_nat k ≤ numeral n ⟷ k ≤ numeral n›
using of_nat_le_iff [of _ ‹numeral n›] by simp
lemma one_of_nat_less_iff [simp]: ‹1 < of_nat k ⟷ 1 < k›
using of_nat_less_iff [of 1] by simp
lemma numeral_nat_less_iff [simp]: ‹numeral n < of_nat k ⟷ numeral n < k›
using of_nat_less_iff [of ‹numeral n›] by simp
lemma of_nat_less_1_iff [simp]: ‹of_nat k < 1 ⟷ k < 1›
using of_nat_less_iff [of _ 1] by simp
lemma of_nat_less_numeral_iff [simp]: ‹of_nat k < numeral n ⟷ k < numeral n›
using of_nat_less_iff [of _ ‹numeral n›] by simp
lemma of_nat_eq_numeral_iff [simp]: ‹of_nat k = numeral n ⟷ k = numeral n›
using of_nat_eq_iff [of _ ‹numeral n›] by simp
lemmas =
zero_le_one not_one_le_zero
order_refl [of 0] order_refl [of 1]
lemmas =
zero_less_one not_one_less_zero
less_irrefl [of 0] less_irrefl [of 1]
lemmas le_numeral_simps [simp] =
numeral_le_iff
one_le_numeral
numeral_le_one_iff
zero_le_numeral
not_numeral_le_zero
lemmas less_numeral_simps [simp] =
numeral_less_iff
one_less_numeral_iff
not_numeral_less_one
zero_less_numeral
not_numeral_less_zero
lemma min_0_1 [simp]:
fixes min' :: ‹'a ⇒ 'a ⇒ 'a›
defines ‹min' ≡ min›
shows
‹min' 0 1 = 0›
‹min' 1 0 = 0›
‹min' 0 (numeral x) = 0›
‹min' (numeral x) 0 = 0›
‹min' 1 (numeral x) = 1›
‹min' (numeral x) 1 = 1›
by (simp_all add: min'_def min_def le_num_One_iff)
lemma max_0_1 [simp]:
fixes max' :: ‹'a ⇒ 'a ⇒ 'a›
defines ‹max' ≡ max›
shows
‹max' 0 1 = 1›
‹max' 1 0 = 1›
‹max' 0 (numeral x) = numeral x›
‹max' (numeral x) 0 = numeral x›
‹max' 1 (numeral x) = numeral x›
‹max' (numeral x) 1 = numeral x›
by (simp_all add: max'_def max_def le_num_One_iff)
end
text ‹Unfold ‹min› and ‹max› on numerals.›
lemmas max_number_of [simp] =
max_def [of ‹numeral u› ‹numeral v›]
max_def [of ‹numeral u› ‹- numeral v›]
max_def [of ‹- numeral u› ‹numeral v›]
max_def [of ‹- numeral u› ‹- numeral v›] for u v
lemmas min_number_of [simp] =
min_def [of ‹numeral u› ‹numeral v›]
min_def [of ‹numeral u› ‹- numeral v›]
min_def [of ‹- numeral u› ‹numeral v›]
min_def [of ‹- numeral u› ‹- numeral v›] for u v
subsubsection ‹Multiplication and negation: class ‹ring_1››
context ring_1
begin
subclass neg_numeral ..
lemma mult_neg_numeral_simps:
‹- numeral m * - numeral n = numeral (m * n)›
‹- numeral m * numeral n = - numeral (m * n)›
‹numeral m * - numeral n = - numeral (m * n)›
by (simp_all only: mult_minus_left mult_minus_right minus_minus numeral_mult)
lemma mult_minus1 [simp]: ‹- 1 * z = - z›
by (simp add: numeral.simps)
lemma mult_minus1_right [simp]: ‹z * - 1 = - z›
by (simp add: numeral.simps)
lemma minus_sub_one_diff_one [simp]:
‹- sub m One - 1 = - numeral m›
proof -
have ‹sub m One + 1 = numeral m›
by (simp flip: eq_diff_eq add: diff_numeral_special)
then have ‹- (sub m One + 1) = - numeral m›
by simp
then show ?thesis
by simp
qed
end
subsubsection ‹Equality using ‹iszero› for rings with non-zero characteristic›
context ring_1
begin
definition iszero :: ‹'a ⇒ bool›
where ‹iszero z ⟷ z = 0›
lemma iszero_0 [simp]: ‹iszero 0›
by (simp add: iszero_def)
lemma not_iszero_1 [simp]: ‹¬ iszero 1›
by (simp add: iszero_def)
lemma not_iszero_Numeral1: ‹¬ iszero Numeral1›
by (simp add: numeral_One)
lemma not_iszero_neg_1 [simp]: ‹¬ iszero (- 1)›
by (simp add: iszero_def)
lemma not_iszero_neg_Numeral1: ‹¬ iszero (- Numeral1)›
by (simp add: numeral_One)
lemma iszero_neg_numeral [simp]: ‹iszero (- numeral w) ⟷ iszero (numeral w)›
unfolding iszero_def by (rule neg_equal_0_iff_equal)
lemma eq_iff_iszero_diff: ‹x = y ⟷ iszero (x - y)›
unfolding iszero_def by (rule eq_iff_diff_eq_0)
text ‹
The ‹eq_numeral_iff_iszero› lemmas are not declared ‹[simp]› by default,
because for rings of characteristic zero, better simp rules are possible.
For a type like integers mod ‹n›, type-instantiated versions of these rules
should be added to the simplifier, along with a type-specific rule for
deciding propositions of the form ‹iszero (numeral w)›.
bh: Maybe it would not be so bad to just declare these as simp rules anyway?
I should test whether these rules take precedence over the ‹ring_char_0›
rules in the simplifier.
›
lemma eq_numeral_iff_iszero:
‹numeral x = numeral y ⟷ iszero (sub x y)›
‹numeral x = - numeral y ⟷ iszero (numeral (x + y))›
‹- numeral x = numeral y ⟷ iszero (numeral (x + y))›
‹- numeral x = - numeral y ⟷ iszero (sub y x)›
‹numeral x = 1 ⟷ iszero (sub x One)›
‹1 = numeral y ⟷ iszero (sub One y)›
‹- numeral x = 1 ⟷ iszero (numeral (x + One))›
‹1 = - numeral y ⟷ iszero (numeral (One + y))›
‹numeral x = 0 ⟷ iszero (numeral x)›
‹0 = numeral y ⟷ iszero (numeral y)›
‹- numeral x = 0 ⟷ iszero (numeral x)›
‹0 = - numeral y ⟷ iszero (numeral y)›
unfolding eq_iff_iszero_diff diff_numeral_simps diff_numeral_special
by simp_all
end
subsubsection ‹Equality and negation: class ‹ring_char_0››
context ring_char_0
begin
lemma not_iszero_numeral [simp]: ‹¬ iszero (numeral w)›
by (simp add: iszero_def)
lemma neg_numeral_eq_iff: ‹- numeral m = - numeral n ⟷ m = n›
by simp
lemma numeral_neq_neg_numeral: ‹numeral m ≠ - numeral n›
by (simp add: eq_neg_iff_add_eq_0 numeral_plus_numeral)
lemma neg_numeral_neq_numeral: ‹- numeral m ≠ numeral n›
by (rule numeral_neq_neg_numeral [symmetric])
lemma zero_neq_neg_numeral: ‹0 ≠ - numeral n›
by simp
lemma neg_numeral_neq_zero: ‹- numeral n ≠ 0›
by simp
lemma one_neq_neg_numeral: ‹1 ≠ - numeral n›
using numeral_neq_neg_numeral [of One n] by (simp add: numeral_One)
lemma neg_numeral_neq_one: ‹- numeral n ≠ 1›
using neg_numeral_neq_numeral [of n One] by (simp add: numeral_One)
lemma neg_one_neq_numeral: ‹- 1 ≠ numeral n›
using neg_numeral_neq_numeral [of One n] by (simp add: numeral_One)
lemma numeral_neq_neg_one: ‹numeral n ≠ - 1›
using numeral_neq_neg_numeral [of n One] by (simp add: numeral_One)
lemma neg_one_eq_numeral_iff: ‹- 1 = - numeral n ⟷ n = One›
using neg_numeral_eq_iff [of One n] by (auto simp add: numeral_One)
lemma numeral_eq_neg_one_iff: ‹- numeral n = - 1 ⟷ n = One›
using neg_numeral_eq_iff [of n One] by (auto simp add: numeral_One)
lemma neg_one_neq_zero: ‹- 1 ≠ 0›
by simp
lemma zero_neq_neg_one: ‹0 ≠ - 1›
by simp
lemma neg_one_neq_one: ‹- 1 ≠ 1›
using neg_numeral_neq_numeral [of One One] by (simp only: numeral_One not_False_eq_True)
lemma one_neq_neg_one: ‹1 ≠ - 1›
using numeral_neq_neg_numeral [of One One] by (simp only: numeral_One not_False_eq_True)
lemmas eq_neg_numeral_simps [simp] =
neg_numeral_eq_iff
numeral_neq_neg_numeral neg_numeral_neq_numeral
one_neq_neg_numeral neg_numeral_neq_one
zero_neq_neg_numeral neg_numeral_neq_zero
neg_one_neq_numeral numeral_neq_neg_one
neg_one_eq_numeral_iff numeral_eq_neg_one_iff
neg_one_neq_zero zero_neq_neg_one
neg_one_neq_one one_neq_neg_one
end
subsubsection ‹Structures with negation and order: class ‹linordered_idom››
context linordered_idom
begin
subclass ring_char_0 ..
lemma neg_numeral_le_iff: ‹- numeral m ≤ - numeral n ⟷ n ≤ m›
by (simp only: neg_le_iff_le numeral_le_iff)
lemma neg_numeral_less_iff: ‹- numeral m < - numeral n ⟷ n < m›
by (simp only: neg_less_iff_less numeral_less_iff)
lemma neg_numeral_less_zero: ‹- numeral n < 0›
by (simp only: neg_less_0_iff_less zero_less_numeral)
lemma neg_numeral_le_zero: ‹- numeral n ≤ 0›
by (simp only: neg_le_0_iff_le zero_le_numeral)
lemma not_zero_less_neg_numeral: ‹¬ 0 < - numeral n›
by (simp only: not_less neg_numeral_le_zero)
lemma not_zero_le_neg_numeral: ‹¬ 0 ≤ - numeral n›
by (simp only: not_le neg_numeral_less_zero)
lemma neg_numeral_less_numeral: ‹- numeral m < numeral n›
using neg_numeral_less_zero zero_less_numeral by (rule less_trans)
lemma neg_numeral_le_numeral: ‹- numeral m ≤ numeral n›
by (simp only: less_imp_le neg_numeral_less_numeral)
lemma not_numeral_less_neg_numeral: ‹¬ numeral m < - numeral n›
by (simp only: not_less neg_numeral_le_numeral)
lemma not_numeral_le_neg_numeral: ‹¬ numeral m ≤ - numeral n›
by (simp only: not_le neg_numeral_less_numeral)
lemma neg_numeral_less_one: ‹- numeral m < 1›
by (rule neg_numeral_less_numeral [of m One, unfolded numeral_One])
lemma neg_numeral_le_one: ‹- numeral m ≤ 1›
by (rule neg_numeral_le_numeral [of m One, unfolded numeral_One])
lemma not_one_less_neg_numeral: ‹¬ 1 < - numeral m›
by (simp only: not_less neg_numeral_le_one)
lemma not_one_le_neg_numeral: ‹¬ 1 ≤ - numeral m›
by (simp only: not_le neg_numeral_less_one)
lemma not_numeral_less_neg_one: ‹¬ numeral m < - 1›
using not_numeral_less_neg_numeral [of m One] by (simp add: numeral_One)
lemma not_numeral_le_neg_one: ‹¬ numeral m ≤ - 1›
using not_numeral_le_neg_numeral [of m One] by (simp add: numeral_One)
lemma neg_one_less_numeral: ‹- 1 < numeral m›
using neg_numeral_less_numeral [of One m] by (simp add: numeral_One)
lemma neg_one_le_numeral: ‹- 1 ≤ numeral m›
using neg_numeral_le_numeral [of One m] by (simp add: numeral_One)
lemma neg_numeral_less_neg_one_iff: ‹- numeral m < - 1 ⟷ m ≠ One›
by (cases m) simp_all
lemma neg_numeral_le_neg_one: ‹- numeral m ≤ - 1›
by simp
lemma not_neg_one_less_neg_numeral: ‹¬ - 1 < - numeral m›
by simp
lemma not_neg_one_le_neg_numeral_iff: ‹¬ - 1 ≤ - numeral m ⟷ m ≠ One›
by (cases m) simp_all
lemma sub_non_negative: ‹sub n m ≥ 0 ⟷ n ≥ m›
by (simp only: sub_def le_diff_eq) simp
lemma sub_positive: ‹sub n m > 0 ⟷ n > m›
by (simp only: sub_def less_diff_eq) simp
lemma sub_non_positive: ‹sub n m ≤ 0 ⟷ n ≤ m›
by (simp only: sub_def diff_le_eq) simp
lemma sub_negative: ‹sub n m < 0 ⟷ n < m›
by (simp only: sub_def diff_less_eq) simp
lemmas le_neg_numeral_simps [simp] =
neg_numeral_le_iff
neg_numeral_le_numeral not_numeral_le_neg_numeral
neg_numeral_le_zero not_zero_le_neg_numeral
neg_numeral_le_one not_one_le_neg_numeral
neg_one_le_numeral not_numeral_le_neg_one
neg_numeral_le_neg_one not_neg_one_le_neg_numeral_iff
lemma le_minus_one_simps [simp]:
‹- 1 ≤ 0›
‹- 1 ≤ 1›
‹¬ 0 ≤ - 1›
‹¬ 1 ≤ - 1›
by simp_all
lemmas less_neg_numeral_simps [simp] =
neg_numeral_less_iff
neg_numeral_less_numeral not_numeral_less_neg_numeral
neg_numeral_less_zero not_zero_less_neg_numeral
neg_numeral_less_one not_one_less_neg_numeral
neg_one_less_numeral not_numeral_less_neg_one
neg_numeral_less_neg_one_iff not_neg_one_less_neg_numeral
lemma less_minus_one_simps [simp]:
‹- 1 < 0›
‹- 1 < 1›
‹¬ 0 < - 1›
‹¬ 1 < - 1›
by (simp_all add: less_le)
lemma abs_numeral [simp]: ‹¦numeral n¦ = numeral n›
by simp
lemma abs_neg_numeral [simp]: ‹¦- numeral n¦ = numeral n›
by (simp only: abs_minus_cancel abs_numeral)
lemma abs_neg_one [simp]: ‹¦- 1¦ = 1›
by simp
end
subsubsection ‹Natural numbers›
lemma numeral_num_of_nat:
‹numeral (num_of_nat n) = n› if ‹n > 0›
using that nat_of_num_numeral num_of_nat_inverse by simp
lemma Suc_1 [simp]: ‹Suc 1 = 2›
unfolding Suc_eq_plus1 by (rule one_add_one)
lemma Suc_numeral [simp]: ‹Suc (numeral n) = numeral (n + One)›
unfolding Suc_eq_plus1 by (rule numeral_plus_one)
definition pred_numeral :: ‹num ⇒ nat›
where ‹pred_numeral k = numeral k - 1›
declare [[code drop: pred_numeral]]
lemma numeral_eq_Suc: ‹numeral k = Suc (pred_numeral k)›
by (simp add: pred_numeral_def)
lemma eval_nat_numeral:
‹numeral One = Suc 0›
‹numeral (Bit0 n) = Suc (numeral (BitM n))›
‹numeral (Bit1 n) = Suc (numeral (Bit0 n))›
by (simp_all add: numeral.simps BitM_plus_one)
lemma pred_numeral_simps [simp]:
‹pred_numeral One = 0›
‹pred_numeral (Bit0 k) = numeral (BitM k)›
‹pred_numeral (Bit1 k) = numeral (Bit0 k)›
by (simp_all only: pred_numeral_def eval_nat_numeral diff_Suc_Suc diff_0)
lemma pred_numeral_inc [simp]:
‹pred_numeral (inc k) = numeral k›
by (simp only: pred_numeral_def numeral_inc diff_add_inverse2)
lemma numeral_2_eq_2: ‹2 = Suc (Suc 0)›
by (simp add: eval_nat_numeral)
lemma numeral_3_eq_3: ‹3 = Suc (Suc (Suc 0))›
by (simp add: eval_nat_numeral)
lemma numeral_1_eq_Suc_0: ‹Numeral1 = Suc 0›
by (simp only: numeral_One One_nat_def)
lemma Suc_nat_number_of_add: ‹Suc (numeral v + n) = numeral (v + One) + n›
by simp
lemma numerals: ‹Numeral1 = (1::nat)› ‹2 = Suc (Suc 0)›
by (rule numeral_One) (rule numeral_2_eq_2)
lemmas numeral_nat = eval_nat_numeral BitM.simps One_nat_def
text ‹Comparisons involving \<^term>‹Suc›.›
lemma eq_numeral_Suc [simp]: ‹numeral k = Suc n ⟷ pred_numeral k = n›
by (simp add: numeral_eq_Suc)
lemma Suc_eq_numeral [simp]: ‹Suc n = numeral k ⟷ n = pred_numeral k›
by (simp add: numeral_eq_Suc)
lemma less_numeral_Suc [simp]: ‹numeral k < Suc n ⟷ pred_numeral k < n›
by (simp add: numeral_eq_Suc)
lemma less_Suc_numeral [simp]: ‹Suc n < numeral k ⟷ n < pred_numeral k›
by (simp add: numeral_eq_Suc)
lemma le_numeral_Suc [simp]: ‹numeral k ≤ Suc n ⟷ pred_numeral k ≤ n›
by (simp add: numeral_eq_Suc)
lemma le_Suc_numeral [simp]: ‹Suc n ≤ numeral k ⟷ n ≤ pred_numeral k›
by (simp add: numeral_eq_Suc)
lemma diff_Suc_numeral [simp]: ‹Suc n - numeral k = n - pred_numeral k›
by (simp add: numeral_eq_Suc)
lemma diff_numeral_Suc [simp]: ‹numeral k - Suc n = pred_numeral k - n›
by (simp add: numeral_eq_Suc)
lemma max_Suc_numeral [simp]: ‹max (Suc n) (numeral k) = Suc (max n (pred_numeral k))›
by (simp add: numeral_eq_Suc)
lemma max_numeral_Suc [simp]: ‹max (numeral k) (Suc n) = Suc (max (pred_numeral k) n)›
by (simp add: numeral_eq_Suc)
lemma min_Suc_numeral [simp]: ‹min (Suc n) (numeral k) = Suc (min n (pred_numeral k))›
by (simp add: numeral_eq_Suc)
lemma min_numeral_Suc [simp]: ‹min (numeral k) (Suc n) = Suc (min (pred_numeral k) n)›
by (simp add: numeral_eq_Suc)
text ‹For \<^term>‹case_nat› and \<^term>‹rec_nat›.›
lemma case_nat_numeral [simp]: ‹case_nat a f (numeral v) = (let pv = pred_numeral v in f pv)›
by (simp add: numeral_eq_Suc)
lemma case_nat_add_eq_if [simp]:
‹case_nat a f ((numeral v) + n) = (let pv = pred_numeral v in f (pv + n))›
by (simp add: numeral_eq_Suc)
lemma rec_nat_numeral [simp]:
‹rec_nat a f (numeral v) = (let pv = pred_numeral v in f pv (rec_nat a f pv))›
by (simp add: numeral_eq_Suc Let_def)
lemma rec_nat_add_eq_if [simp]:
‹rec_nat a f (numeral v + n) = (let pv = pred_numeral v in f (pv + n) (rec_nat a f (pv + n)))›
by (simp add: numeral_eq_Suc Let_def)
text ‹Case analysis on \<^term>‹n < 2›.›
lemma less_2_cases: ‹n < 2 ⟹ n = 0 ∨ n = Suc 0›
by (auto simp add: numeral_2_eq_2)
lemma less_2_cases_iff: ‹n < 2 ⟷ n = 0 ∨ n = Suc 0›
by (auto simp add: numeral_2_eq_2)
text ‹Removal of Small Numerals: 0, 1 and (in additive positions) 2.›
text ‹bh: Are these rules really a good idea? LCP: well, it already happens for 0 and 1!›
lemma add_2_eq_Suc [simp]: ‹2 + n = Suc (Suc n)›
by simp
lemma add_2_eq_Suc' [simp]: ‹n + 2 = Suc (Suc n)›
by simp
text ‹Can be used to eliminate long strings of Sucs, but not by default.›
lemma Suc3_eq_add_3: ‹Suc (Suc (Suc n)) = 3 + n›
by simp
lemmas nat_1_add_1 = one_add_one [where 'a=nat]
context semiring_numeral
begin
lemma numeral_add_unfold_funpow:
‹numeral k + a = ((+) 1 ^^ numeral k) a›
proof (rule sym, induction k arbitrary: a)
case One
then show ?case
by (simp add: Num.numeral_One numeral_One)
next
case (Bit0 k)
then show ?case
by (simp add: Num.numeral_Bit0 numeral_Bit0 ac_simps funpow_add)
next
case (Bit1 k)
then show ?case
by (simp add: Num.numeral_Bit1 numeral_Bit1 ac_simps funpow_add)
qed
end
context semiring_1
begin
lemma numeral_unfold_funpow:
‹numeral k = ((+) 1 ^^ numeral k) 0›
using numeral_add_unfold_funpow [of k 0] by simp
end
context
includes lifting_syntax
begin
lemma transfer_rule_numeral:
‹((=) ===> R) numeral numeral›
if [transfer_rule]: ‹R 0 0› ‹R 1 1›
‹(R ===> R ===> R) (+) (+)›
for R :: ‹'a::{semiring_numeral,monoid_add} ⇒ 'b::{semiring_numeral,monoid_add} ⇒ bool›
proof -
have ‹((=) ===> R) (λk. ((+) 1 ^^ numeral k) 0) (λk. ((+) 1 ^^ numeral k) 0)›
by transfer_prover
moreover have ‹numeral = (λk. ((+) (1::'a) ^^ numeral k) 0)›
using numeral_add_unfold_funpow [where ?'a = 'a, of _ 0]
by (simp add: fun_eq_iff)
moreover have ‹numeral = (λk. ((+) (1::'b) ^^ numeral k) 0)›
using numeral_add_unfold_funpow [where ?'a = 'b, of _ 0]
by (simp add: fun_eq_iff)
ultimately show ?thesis
by simp
qed
end
subsection ‹Particular lemmas concerning \<^term>‹2››
context linordered_field
begin
subclass field_char_0 ..
lemma half_gt_zero_iff: ‹0 < a / 2 ⟷ 0 < a›
by (auto simp add: field_simps)
lemma half_gt_zero [simp]: ‹0 < a ⟹ 0 < a / 2›
by (simp add: half_gt_zero_iff)
end
subsection ‹Numeral equations as default simplification rules›
declare (in numeral) numeral_One [simp]
declare (in numeral) numeral_plus_numeral [simp]
declare (in numeral) add_numeral_special [simp]
declare (in neg_numeral) add_neg_numeral_simps [simp]
declare (in neg_numeral) add_neg_numeral_special [simp]
declare (in neg_numeral) diff_numeral_simps [simp]
declare (in neg_numeral) diff_numeral_special [simp]
declare (in semiring_numeral) numeral_times_numeral [simp]
declare (in ring_1) mult_neg_numeral_simps [simp]
subsubsection ‹Special Simplification for Constants›
text ‹These distributive laws move literals inside sums and differences.›
lemmas distrib_right_numeral [simp] = distrib_right [of _ _ ‹numeral v›] for v
lemmas distrib_left_numeral [simp] = distrib_left [of ‹numeral v›] for v
lemmas left_diff_distrib_numeral [simp] = left_diff_distrib [of _ _ ‹numeral v›] for v
lemmas right_diff_distrib_numeral [simp] = right_diff_distrib [of ‹numeral v›] for v
text ‹These are actually for fields, like real›
lemmas zero_less_divide_iff_numeral [simp, no_atp] = zero_less_divide_iff [of ‹numeral w›] for w
lemmas divide_less_0_iff_numeral [simp, no_atp] = divide_less_0_iff [of ‹numeral w›] for w
lemmas zero_le_divide_iff_numeral [simp, no_atp] = zero_le_divide_iff [of ‹numeral w›] for w
lemmas divide_le_0_iff_numeral [simp, no_atp] = divide_le_0_iff [of ‹numeral w›] for w
text ‹Replaces ‹inverse #nn› by ‹1/#nn›. It looks
strange, but then other simprocs simplify the quotient.›
lemmas inverse_eq_divide_numeral [simp] =
inverse_eq_divide [of ‹numeral w›] for w
lemmas inverse_eq_divide_neg_numeral [simp] =
inverse_eq_divide [of ‹- numeral w›] for w
text ‹These laws simplify inequalities, moving unary minus from a term
into the literal.›
lemmas equation_minus_iff_numeral [no_atp] =
equation_minus_iff [of ‹numeral v›] for v
lemmas minus_equation_iff_numeral [no_atp] =
minus_equation_iff [of _ ‹numeral v›] for v
lemmas le_minus_iff_numeral [no_atp] =
le_minus_iff [of ‹numeral v›] for v
lemmas minus_le_iff_numeral [no_atp] =
minus_le_iff [of _ ‹numeral v›] for v
lemmas less_minus_iff_numeral [no_atp] =
less_minus_iff [of ‹numeral v›] for v
lemmas minus_less_iff_numeral [no_atp] =
minus_less_iff [of _ ‹numeral v›] for v
text ‹Cancellation of constant factors in comparisons (‹<› and ‹≤›)›
lemmas mult_less_cancel_left_numeral [simp, no_atp] = mult_less_cancel_left [of ‹numeral v›] for v
lemmas mult_less_cancel_right_numeral [simp, no_atp] = mult_less_cancel_right [of _ ‹numeral v›] for v
lemmas mult_le_cancel_left_numeral [simp, no_atp] = mult_le_cancel_left [of ‹numeral v›] for v
lemmas mult_le_cancel_right_numeral [simp, no_atp] = mult_le_cancel_right [of _ ‹numeral v›] for v
text ‹Multiplying out constant divisors in comparisons (‹<›, ‹≤› and ‹=›)›
named_theorems divide_const_simps ‹simplification rules to simplify comparisons involving constant divisors›
lemmas le_divide_eq_numeral1 [simp,divide_const_simps] =
pos_le_divide_eq [of ‹numeral w›, OF zero_less_numeral]
neg_le_divide_eq [of ‹- numeral w›, OF neg_numeral_less_zero] for w
lemmas divide_le_eq_numeral1 [simp,divide_const_simps] =
pos_divide_le_eq [of ‹numeral w›, OF zero_less_numeral]
neg_divide_le_eq [of ‹- numeral w›, OF neg_numeral_less_zero] for w
lemmas less_divide_eq_numeral1 [simp,divide_const_simps] =
pos_less_divide_eq [of ‹numeral w›, OF zero_less_numeral]
neg_less_divide_eq [of ‹- numeral w›, OF neg_numeral_less_zero] for w
lemmas divide_less_eq_numeral1 [simp,divide_const_simps] =
pos_divide_less_eq [of ‹numeral w›, OF zero_less_numeral]
neg_divide_less_eq [of ‹- numeral w›, OF neg_numeral_less_zero] for w
lemmas eq_divide_eq_numeral1 [simp,divide_const_simps] =
eq_divide_eq [of _ _ ‹numeral w›]
eq_divide_eq [of _ _ ‹- numeral w›] for w
lemmas divide_eq_eq_numeral1 [simp,divide_const_simps] =
divide_eq_eq [of _ ‹numeral w›]
divide_eq_eq [of _ ‹- numeral w›] for w
subsubsection ‹Optional Simplification Rules Involving Constants›
text ‹Simplify quotients that are compared with a literal constant.›
lemmas le_divide_eq_numeral [divide_const_simps] =
le_divide_eq [of ‹numeral w›]
le_divide_eq [of ‹- numeral w›] for w
lemmas divide_le_eq_numeral [divide_const_simps] =
divide_le_eq [of _ _ ‹numeral w›]
divide_le_eq [of _ _ ‹- numeral w›] for w
lemmas less_divide_eq_numeral [divide_const_simps] =
less_divide_eq [of ‹numeral w›]
less_divide_eq [of ‹- numeral w›] for w
lemmas divide_less_eq_numeral [divide_const_simps] =
divide_less_eq [of _ _ ‹numeral w›]
divide_less_eq [of _ _ ‹- numeral w›] for w
lemmas eq_divide_eq_numeral [divide_const_simps] =
eq_divide_eq [of ‹numeral w›]
eq_divide_eq [of ‹- numeral w›] for w
lemmas divide_eq_eq_numeral [divide_const_simps] =
divide_eq_eq [of _ _ ‹numeral w›]
divide_eq_eq [of _ _ ‹- numeral w›] for w
text ‹Not good as automatic simprules because they cause case splits.›
lemmas [divide_const_simps] =
le_divide_eq_1 divide_le_eq_1 less_divide_eq_1 divide_less_eq_1
subsection ‹Setting up simprocs›
lemma mult_numeral_1: ‹Numeral1 * a = a›
for a :: ‹'a::semiring_numeral›
by simp
lemma mult_numeral_1_right: ‹a * Numeral1 = a›
for a :: ‹'a::semiring_numeral›
by simp
lemma divide_numeral_1: ‹a / Numeral1 = a›
for a :: ‹'a::field›
by simp
lemma inverse_numeral_1: ‹inverse Numeral1 = (Numeral1::'a::division_ring)›
by simp
text ‹
Theorem lists for the cancellation simprocs. The use of a binary
numeral for 1 reduces the number of special cases.
›
lemma mult_1s_semiring_numeral:
‹Numeral1 * a = a›
‹a * Numeral1 = a›
for a :: ‹'a::semiring_numeral›
by simp_all
lemma mult_1s_ring_1:
‹- Numeral1 * b = - b›
‹b * - Numeral1 = - b›
for b :: ‹'a::ring_1›
by simp_all
lemmas mult_1s = mult_1s_semiring_numeral mult_1s_ring_1
setup ‹
Reorient_Proc.add
(fn Const (\<^const_name>‹numeral›, _) $ _ => true
| Const (\<^const_name>‹uminus›, _) $ (Const (\<^const_name>‹numeral›, _) $ _) => true
| _ => false)
›
simproc_setup reorient_numeral (‹numeral w = x› | ‹- numeral w = y›) =
‹K Reorient_Proc.proc›
subsubsection ‹Simplification of arithmetic operations on integer constants›
lemmas arith_special =
add_numeral_special add_neg_numeral_special
diff_numeral_special
lemmas =
numeral_plus_numeral add_neg_numeral_simps add_0_left add_0_right
minus_zero
diff_numeral_simps diff_0 diff_0_right
numeral_times_numeral mult_neg_numeral_simps
mult_zero_left mult_zero_right
abs_numeral abs_neg_numeral
text ‹
For making a minimal simpset, one must include these default simprules.
Also include ‹simp_thms›.
›
lemmas arith_simps =
add_num_simps mult_num_simps sub_num_simps
BitM.simps dbl_simps dbl_inc_simps dbl_dec_simps
abs_zero abs_one arith_extra_simps
lemmas more_arith_simps =
neg_le_iff_le
minus_zero left_minus right_minus
mult_1_left mult_1_right
mult_minus_left mult_minus_right
minus_add_distrib minus_minus mult.assoc
lemmas of_nat_simps =
of_nat_0 of_nat_1 of_nat_Suc of_nat_add of_nat_mult
text ‹Simplification of relational operations.›
lemmas =
zero_neq_one one_neq_zero
lemmas rel_simps =
le_num_simps less_num_simps eq_num_simps
le_numeral_simps le_neg_numeral_simps le_minus_one_simps le_numeral_extra
less_numeral_simps less_neg_numeral_simps less_minus_one_simps less_numeral_extra
eq_numeral_simps eq_neg_numeral_simps eq_numeral_extra
lemma Let_numeral [simp]: ‹Let (numeral v) f = f (numeral v)›
unfolding Let_def ..
lemma Let_neg_numeral [simp]: ‹Let (- numeral v) f = f (- numeral v)›
unfolding Let_def ..
declaration ‹
let
fun number_of ctxt T n =
if not (Sign.of_sort (Proof_Context.theory_of ctxt) (T, \<^sort>‹numeral›))
then raise CTERM ("number_of", [])
else Numeral.mk_cnumber (Thm.ctyp_of ctxt T) n;
in
K (
Lin_Arith.set_number_of number_of
#> Lin_Arith.add_simps
@{thms arith_simps more_arith_simps rel_simps pred_numeral_simps
arith_special numeral_One of_nat_simps uminus_numeral_One
Suc_numeral Let_numeral Let_neg_numeral Let_0 Let_1
le_Suc_numeral le_numeral_Suc less_Suc_numeral less_numeral_Suc
Suc_eq_numeral eq_numeral_Suc mult_Suc mult_Suc_right of_nat_numeral})
end
›
subsubsection ‹Simplification of arithmetic when nested to the right›
lemma add_numeral_left [simp]: ‹numeral v + (numeral w + z) = (numeral(v + w) + z)›
by (simp_all add: add.assoc [symmetric])
lemma add_neg_numeral_left [simp]:
‹numeral v + (- numeral w + y) = (sub v w + y)›
‹- numeral v + (numeral w + y) = (sub w v + y)›
‹- numeral v + (- numeral w + y) = (- numeral(v + w) + y)›
by (simp_all add: add.assoc [symmetric])
lemma mult_numeral_left_semiring_numeral:
‹numeral v * (numeral w * z) = (numeral(v * w) * z :: 'a::semiring_numeral)›
by (simp add: mult.assoc [symmetric])
lemma mult_numeral_left_ring_1:
‹- numeral v * (numeral w * y) = (- numeral(v * w) * y :: 'a::ring_1)›
‹numeral v * (- numeral w * y) = (- numeral(v * w) * y :: 'a::ring_1)›
‹- numeral v * (- numeral w * y) = (numeral(v * w) * y :: 'a::ring_1)›
by (simp_all add: mult.assoc [symmetric])
lemmas mult_numeral_left [simp] =
mult_numeral_left_semiring_numeral
mult_numeral_left_ring_1
subsection ‹Code module namespace›
code_identifier
code_module Num ⇀ (SML) Arith and (OCaml) Arith and (Haskell) Arith
subsection ‹Printing of evaluated natural numbers as numerals›
lemma [code_post]:
‹Suc 0 = 1›
‹Suc 1 = 2›
‹Suc (numeral n) = numeral (inc n)›
by (simp_all add: numeral_inc)
lemmas [code_post] = inc.simps
subsection ‹More on auxiliary conversion›
context semiring_1
begin
lemma num_of_nat_numeral_eq [simp]:
‹num_of_nat (numeral q) = q›
by (simp flip: nat_of_num_numeral add: nat_of_num_inverse)
lemma numeral_num_of_nat_unfold:
‹numeral (num_of_nat n) = (if n = 0 then 1 else of_nat n)›
apply (simp only: of_nat_numeral [symmetric, of ‹num_of_nat n›] flip: nat_of_num_numeral)
apply (auto simp add: num_of_nat_inverse)
done
end
hide_const (open) One Bit0 Bit1 BitM inc pow sqr sub dbl dbl_inc dbl_dec
end