Theory Typechecking

(*  Title:      CTT/ex/Typechecking.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1991  University of Cambridge
*)

section ‹Easy examples: type checking and type deduction›

theory Typechecking
imports "../CTT"
begin

subsection ‹Single-step proofs: verifying that a type is well-formed›

schematic_goal "?A type"
  by (rule form_rls)

schematic_goal "?A type"
  apply (rule form_rls)
  back
   apply (rule form_rls)
  apply (rule form_rls)
  done

schematic_goal "z:?A . N + ?B(z) type"
  apply (rule form_rls)
   apply (rule form_rls)
  apply (rule form_rls)
   apply (rule form_rls)
  apply (rule form_rls)
  done


subsection ‹Multi-step proofs: Type inference›

lemma "w:N. N + N type"
  by form

schematic_goal "<0, succ(0)> : ?A"
  apply intr done

schematic_goal "w:N . Eq(?A,w,w) type"
  apply typechk done

schematic_goal "x:N . y:N . Eq(?A,x,y) type"
  apply typechk done

text ‹typechecking an application of fst›
schematic_goal "(λu. split(u, λv w. v)) ` <0, succ(0)> : ?A"
  apply typechk done

text ‹typechecking the predecessor function›
schematic_goal "λn. rec(n, 0, λx y. x) : ?A"
  apply typechk done

text ‹typechecking the addition function›
schematic_goal "λn. λm. rec(n, m, λx y. succ(y)) : ?A"
  apply typechk done

text ‹Proofs involving arbitrary types.
  For concreteness, every type variable left over is forced to be @{term N}
method_setup N =
  Scan.succeed (fn ctxt => SIMPLE_METHOD (TRYALL (resolve_tac ctxt @{thms NF})))

schematic_goal "λw. <w,w> : ?A"
  apply typechk
  apply N
  done

schematic_goal "λx. λy. x : ?A"
  apply typechk
   apply N
  done

text ‹typechecking fst (as a function object)›
schematic_goal "λi. split(i, λj k. j) : ?A"
  apply typechk 
   apply N
  done

end