Theory Typechecking
section ‹Easy examples: type checking and type deduction›
theory Typechecking
imports "../CTT"
begin
subsection ‹Single-step proofs: verifying that a type is well-formed›
schematic_goal "?A type"
by (rule form_rls)
schematic_goal "?A type"
apply (rule form_rls)
back
apply (rule form_rls)
apply (rule form_rls)
done
schematic_goal "∏z:?A . N + ?B(z) type"
apply (rule form_rls)
apply (rule form_rls)
apply (rule form_rls)
apply (rule form_rls)
apply (rule form_rls)
done
subsection ‹Multi-step proofs: Type inference›
lemma "∏w:N. N + N type"
by form
schematic_goal "<0, succ(0)> : ?A"
apply intr done
schematic_goal "∏w:N . Eq(?A,w,w) type"
apply typechk done
schematic_goal "∏x:N . ∏y:N . Eq(?A,x,y) type"
apply typechk done
text ‹typechecking an application of fst›
schematic_goal "(❙λu. split(u, λv w. v)) ` <0, succ(0)> : ?A"
apply typechk done
text ‹typechecking the predecessor function›
schematic_goal "❙λn. rec(n, 0, λx y. x) : ?A"
apply typechk done
text ‹typechecking the addition function›
schematic_goal "❙λn. ❙λm. rec(n, m, λx y. succ(y)) : ?A"
apply typechk done
text ‹Proofs involving arbitrary types.
For concreteness, every type variable left over is forced to be @{term N}›
method_setup N =
‹Scan.succeed (fn ctxt => SIMPLE_METHOD (TRYALL (resolve_tac ctxt @{thms NF})))›
schematic_goal "❙λw. <w,w> : ?A"
apply typechk
apply N
done
schematic_goal "❙λx. ❙λy. x : ?A"
apply typechk
apply N
done
text ‹typechecking fst (as a function object)›
schematic_goal "❙λi. split(i, λj k. j) : ?A"
apply typechk
apply N
done
end