Theory ILL
theory ILL
imports Sequents
begin
consts
Trueprop :: "two_seqi"
tens :: "[o, o] ⇒ o" (infixr "><" 35)
limp :: "[o, o] ⇒ o" (infixr "-o" 45)
FShriek :: "o ⇒ o" ("! _" [100] 1000)
lconj :: "[o, o] ⇒ o" (infixr "&&" 35)
ldisj :: "[o, o] ⇒ o" (infixr "++" 35)
zero :: "o" ("0")
top :: "o" ("1")
eye :: "o" ("I")
Context :: "two_seqi"
PromAux :: "three_seqi"
syntax
"_Trueprop" :: "single_seqe" ("((_)/ ⊢ (_))" [6,6] 5)
"_Context" :: "two_seqe" ("((_)/ :=: (_))" [6,6] 5)
"_PromAux" :: "three_seqe" ("promaux {_||_||_}")
parse_translation ‹
[(\<^syntax_const>‹_Trueprop›, K (single_tr \<^const_syntax>‹Trueprop›)),
(\<^syntax_const>‹_Context›, K (two_seq_tr \<^const_syntax>‹Context›)),
(\<^syntax_const>‹_PromAux›, K (three_seq_tr \<^const_syntax>‹PromAux›))]
›
print_translation ‹
[(\<^const_syntax>‹Trueprop›, K (single_tr' \<^syntax_const>‹_Trueprop›)),
(\<^const_syntax>‹Context›, K (two_seq_tr' \<^syntax_const>‹_Context›)),
(\<^const_syntax>‹PromAux›, K (three_seq_tr' \<^syntax_const>‹_PromAux›))]
›
definition liff :: "[o, o] ⇒ o" (infixr "o-o" 45)
where "P o-o Q == (P -o Q) >< (Q -o P)"
definition aneg :: "o⇒o" ("~_")
where "~A == A -o 0"
axiomatization where
identity: "P ⊢ P" and
zerol: "$G, 0, $H ⊢ A" and
derelict: "$F, A, $G ⊢ C ⟹ $F, !A, $G ⊢ C" and
contract: "$F, !A, !A, $G ⊢ C ⟹ $F, !A, $G ⊢ C" and
weaken: "$F, $G ⊢ C ⟹ $G, !A, $F ⊢ C" and
promote2: "promaux{ || $H || B} ⟹ $H ⊢ !B" and
promote1: "promaux{!A, $G || $H || B}
⟹ promaux {$G || $H, !A || B}" and
promote0: "$G ⊢ A ⟹ promaux {$G || || A}" and
tensl: "$H, A, B, $G ⊢ C ⟹ $H, A >< B, $G ⊢ C" and
impr: "A, $F ⊢ B ⟹ $F ⊢ A -o B" and
conjr: "⟦$F ⊢ A ;
$F ⊢ B⟧
⟹ $F ⊢ (A && B)" and
conjll: "$G, A, $H ⊢ C ⟹ $G, A && B, $H ⊢ C" and
conjlr: "$G, B, $H ⊢ C ⟹ $G, A && B, $H ⊢ C" and
disjrl: "$G ⊢ A ⟹ $G ⊢ A ++ B" and
disjrr: "$G ⊢ B ⟹ $G ⊢ A ++ B" and
disjl: "⟦$G, A, $H ⊢ C ;
$G, B, $H ⊢ C⟧
⟹ $G, A ++ B, $H ⊢ C" and
tensr: "⟦$F, $J :=: $G;
$F ⊢ A ;
$J ⊢ B⟧
⟹ $G ⊢ A >< B" and
impl: "⟦$G, $F :=: $J, $H ;
B, $F ⊢ C ;
$G ⊢ A⟧
⟹ $J, A -o B, $H ⊢ C" and
cut: "⟦ $J1, $H1, $J2, $H3, $J3, $H2, $J4, $H4 :=: $F ;
$H1, $H2, $H3, $H4 ⊢ A ;
$J1, $J2, A, $J3, $J4 ⊢ B⟧ ⟹ $F ⊢ B" and
context1: "$G :=: $G" and
context2: "$F, $G :=: $H, !A, $G ⟹ $F, A, $G :=: $H, !A, $G" and
context3: "$F, $G :=: $H, $J ⟹ $F, A, $G :=: $H, A, $J" and
context4a: "$F :=: $H, $G ⟹ $F :=: $H, !A, $G" and
context4b: "$F, $H :=: $G ⟹ $F, !A, $H :=: $G" and
context5: "$F, $G :=: $H ⟹ $G, $F :=: $H"
text "declarations for lazy classical reasoning:"
lemmas [safe] =
context3
context2
promote0
disjl
conjr
tensl
lemmas [unsafe] =
context4b
context4a
context1
promote2
promote1
weaken
derelict
impl
tensr
impr
disjrr
disjrl
conjlr
conjll
zerol
identity
lemma aux_impl: "$F, $G ⊢ A ⟹ $F, !(A -o B), $G ⊢ B"
apply (rule derelict)
apply (rule impl)
apply (rule_tac [2] identity)
apply (rule context1)
apply assumption
done
lemma conj_lemma: " $F, !A, !B, $G ⊢ C ⟹ $F, !(A && B), $G ⊢ C"
apply (rule contract)
apply (rule_tac A = " (!A) >< (!B) " in cut)
apply (rule_tac [2] tensr)
prefer 3
apply (subgoal_tac "! (A && B) ⊢ !A")
apply assumption
apply best
prefer 3
apply (subgoal_tac "! (A && B) ⊢ !B")
apply assumption
apply best
apply (rule_tac [2] context1)
apply (rule_tac [2] tensl)
prefer 2 apply assumption
apply (rule context3)
apply (rule context3)
apply (rule context1)
done
lemma impr_contract: "!A, !A, $G ⊢ B ⟹ $G ⊢ (!A) -o B"
apply (rule impr)
apply (rule contract)
apply assumption
done
lemma impr_contr_der: "A, !A, $G ⊢ B ⟹ $G ⊢ (!A) -o B"
apply (rule impr)
apply (rule contract)
apply (rule derelict)
apply assumption
done
lemma contrad1: "$F, (!B) -o 0, $G, !B, $H ⊢ A"
apply (rule impl)
apply (rule_tac [3] identity)
apply (rule context3)
apply (rule context1)
apply (rule zerol)
done
lemma contrad2: "$F, !B, $G, (!B) -o 0, $H ⊢ A"
apply (rule impl)
apply (rule_tac [3] identity)
apply (rule context3)
apply (rule context1)
apply (rule zerol)
done
lemma ll_mp: "A -o B, A ⊢ B"
apply (rule impl)
apply (rule_tac [2] identity)
apply (rule_tac [2] identity)
apply (rule context1)
done
lemma mp_rule1: "$F, B, $G, $H ⊢ C ⟹ $F, A, $G, A -o B, $H ⊢ C"
apply (rule_tac A = "B" in cut)
apply (rule_tac [2] ll_mp)
prefer 2 apply (assumption)
apply (rule context3)
apply (rule context3)
apply (rule context1)
done
lemma mp_rule2: "$F, B, $G, $H ⊢ C ⟹ $F, A -o B, $G, A, $H ⊢ C"
apply (rule_tac A = "B" in cut)
apply (rule_tac [2] ll_mp)
prefer 2 apply (assumption)
apply (rule context3)
apply (rule context3)
apply (rule context1)
done
lemma or_to_and: "!((!(A ++ B)) -o 0) ⊢ !( ((!A) -o 0) && ((!B) -o 0))"
by best
lemma o_a_rule: "$F, !( ((!A) -o 0) && ((!B) -o 0)), $G ⊢ C ⟹
$F, !((!(A ++ B)) -o 0), $G ⊢ C"
apply (rule cut)
apply (rule_tac [2] or_to_and)
prefer 2 apply (assumption)
apply (rule context3)
apply (rule context1)
done
lemma conj_imp: "((!A) -o C) ++ ((!B) -o C) ⊢ (!(A && B)) -o C"
apply (rule impr)
apply (rule conj_lemma)
apply (rule disjl)
apply (rule mp_rule1, best)+
done
lemma not_imp: "!A, !((!B) -o 0) ⊢ (!((!A) -o B)) -o 0"
by best
lemma a_not_a: "!A -o (!A -o 0) ⊢ !A -o 0"
apply (rule impr)
apply (rule contract)
apply (rule impl)
apply (rule_tac [3] identity)
apply (rule context1)
apply best
done
lemma a_not_a_rule: "$J1, !A -o 0, $J2 ⊢ B ⟹ $J1, !A -o (!A -o 0), $J2 ⊢ B"
apply (rule_tac A = "!A -o 0" in cut)
apply (rule_tac [2] a_not_a)
prefer 2 apply assumption
apply best
done
ML ‹
val safe_pack =
\<^context>
|> fold_rev Cla.add_safe @{thms conj_lemma ll_mp contrad1
contrad2 mp_rule1 mp_rule2 o_a_rule a_not_a_rule}
|> Cla.add_unsafe @{thm aux_impl}
|> Cla.get_pack;
val power_pack =
Cla.put_pack safe_pack \<^context>
|> Cla.add_unsafe @{thm impr_contr_der}
|> Cla.get_pack;
›
method_setup best_safe =
‹Scan.succeed (fn ctxt => SIMPLE_METHOD' (Cla.best_tac (Cla.put_pack safe_pack ctxt)))›
method_setup best_power =
‹Scan.succeed (fn ctxt => SIMPLE_METHOD' (Cla.best_tac (Cla.put_pack power_pack ctxt)))›
lemma "!((!A) -o ((!B) -o 0)) ⊢ (!(A && B)) -o 0"
by best_safe
lemma "!((!(A && B)) -o 0) ⊢ !((!A) -o ((!B) -o 0))"
by best_safe
lemma "!( (!((! ((!A) -o B) ) -o 0)) -o 0) ⊢
(!A) -o ( (! ((!B) -o 0)) -o 0)"
by best_safe
lemma "!( (!A) -o ( (! ((!B) -o 0)) -o 0) ) ⊢
(!((! ((!A) -o B) ) -o 0)) -o 0"
by best_power
end