Theory LK0
section ‹Classical First-Order Sequent Calculus›
theory LK0
imports Sequents
begin
setup ‹Proofterm.set_preproc (Proof_Rewrite_Rules.standard_preproc [])›
class "term"
default_sort "term"
consts
Trueprop :: "two_seqi"
True :: o
False :: o
equal :: "['a,'a] ⇒ o" (infixl "=" 50)
Not :: "o ⇒ o" ("¬ _" [40] 40)
conj :: "[o,o] ⇒ o" (infixr "∧" 35)
disj :: "[o,o] ⇒ o" (infixr "∨" 30)
imp :: "[o,o] ⇒ o" (infixr "⟶" 25)
iff :: "[o,o] ⇒ o" (infixr "⟷" 25)
The :: "('a ⇒ o) ⇒ 'a" (binder "THE " 10)
All :: "('a ⇒ o) ⇒ o" (binder "∀" 10)
Ex :: "('a ⇒ o) ⇒ o" (binder "∃" 10)
syntax
"_Trueprop" :: "two_seqe" ("((_)/ ⊢ (_))" [6,6] 5)
parse_translation ‹[(\<^syntax_const>‹_Trueprop›, K (two_seq_tr \<^const_syntax>‹Trueprop›))]›
print_translation ‹[(\<^const_syntax>‹Trueprop›, K (two_seq_tr' \<^syntax_const>‹_Trueprop›))]›
abbreviation
not_equal (infixl "≠" 50) where
"x ≠ y ≡ ¬ (x = y)"
axiomatization where
contRS: "$H ⊢ $E, $S, $S, $F ⟹ $H ⊢ $E, $S, $F" and
contLS: "$H, $S, $S, $G ⊢ $E ⟹ $H, $S, $G ⊢ $E" and
thinRS: "$H ⊢ $E, $F ⟹ $H ⊢ $E, $S, $F" and
thinLS: "$H, $G ⊢ $E ⟹ $H, $S, $G ⊢ $E" and
exchRS: "$H ⊢ $E, $R, $S, $F ⟹ $H ⊢ $E, $S, $R, $F" and
exchLS: "$H, $R, $S, $G ⊢ $E ⟹ $H, $S, $R, $G ⊢ $E" and
cut: "⟦$H ⊢ $E, P; $H, P ⊢ $E⟧ ⟹ $H ⊢ $E" and
basic: "$H, P, $G ⊢ $E, P, $F" and
conjR: "⟦$H⊢ $E, P, $F; $H⊢ $E, Q, $F⟧ ⟹ $H⊢ $E, P ∧ Q, $F" and
conjL: "$H, P, Q, $G ⊢ $E ⟹ $H, P ∧ Q, $G ⊢ $E" and
disjR: "$H ⊢ $E, P, Q, $F ⟹ $H ⊢ $E, P ∨ Q, $F" and
disjL: "⟦$H, P, $G ⊢ $E; $H, Q, $G ⊢ $E⟧ ⟹ $H, P ∨ Q, $G ⊢ $E" and
impR: "$H, P ⊢ $E, Q, $F ⟹ $H ⊢ $E, P ⟶ Q, $F" and
impL: "⟦$H,$G ⊢ $E,P; $H, Q, $G ⊢ $E⟧ ⟹ $H, P ⟶ Q, $G ⊢ $E" and
notR: "$H, P ⊢ $E, $F ⟹ $H ⊢ $E, ¬ P, $F" and
notL: "$H, $G ⊢ $E, P ⟹ $H, ¬ P, $G ⊢ $E" and
FalseL: "$H, False, $G ⊢ $E" and
True_def: "True ≡ False ⟶ False" and
iff_def: "P ⟷ Q ≡ (P ⟶ Q) ∧ (Q ⟶ P)"
axiomatization where
allR: "(⋀x. $H ⊢ $E, P(x), $F) ⟹ $H ⊢ $E, ∀x. P(x), $F" and
allL: "$H, P(x), $G, ∀x. P(x) ⊢ $E ⟹ $H, ∀x. P(x), $G ⊢ $E" and
exR: "$H ⊢ $E, P(x), $F, ∃x. P(x) ⟹ $H ⊢ $E, ∃x. P(x), $F" and
exL: "(⋀x. $H, P(x), $G ⊢ $E) ⟹ $H, ∃x. P(x), $G ⊢ $E" and
refl: "$H ⊢ $E, a = a, $F" and
subst: "⋀G H E. $H(a), $G(a) ⊢ $E(a) ⟹ $H(b), a=b, $G(b) ⊢ $E(b)"
axiomatization where
eq_reflection: "⊢ x = y ⟹ (x ≡ y)" and
iff_reflection: "⊢ P ⟷ Q ⟹ (P ≡ Q)"
axiomatization where
The: "⟦$H ⊢ $E, P(a), $F; ⋀x.$H, P(x) ⊢ $E, x=a, $F⟧ ⟹
$H ⊢ $E, P(THE x. P(x)), $F"
definition If :: "[o, 'a, 'a] ⇒ 'a" ("(if (_)/ then (_)/ else (_))" 10)
where "If(P,x,y) ≡ THE z::'a. (P ⟶ z = x) ∧ (¬ P ⟶ z = y)"
lemma contR: "$H ⊢ $E, P, P, $F ⟹ $H ⊢ $E, P, $F"
by (rule contRS)
lemma contL: "$H, P, P, $G ⊢ $E ⟹ $H, P, $G ⊢ $E"
by (rule contLS)
lemma thinR: "$H ⊢ $E, $F ⟹ $H ⊢ $E, P, $F"
by (rule thinRS)
lemma thinL: "$H, $G ⊢ $E ⟹ $H, P, $G ⊢ $E"
by (rule thinLS)
lemma exchR: "$H ⊢ $E, Q, P, $F ⟹ $H ⊢ $E, P, Q, $F"
by (rule exchRS)
lemma exchL: "$H, Q, P, $G ⊢ $E ⟹ $H, P, Q, $G ⊢ $E"
by (rule exchLS)
ML ‹
fun cutR_tac ctxt s i =
Rule_Insts.res_inst_tac ctxt [((("P", 0), Position.none), s)] [] @{thm cut} i THEN
resolve_tac ctxt @{thms thinR} i
fun cutL_tac ctxt s i =
Rule_Insts.res_inst_tac ctxt [((("P", 0), Position.none), s)] [] @{thm cut} i THEN
resolve_tac ctxt @{thms thinL} (i + 1)
›
lemma iffR: "⟦$H,P ⊢ $E,Q,$F; $H,Q ⊢ $E,P,$F⟧ ⟹ $H ⊢ $E, P ⟷ Q, $F"
apply (unfold iff_def)
apply (assumption | rule conjR impR)+
done
lemma iffL: "⟦$H,$G ⊢ $E,P,Q; $H,Q,P,$G ⊢ $E⟧ ⟹ $H, P ⟷ Q, $G ⊢ $E"
apply (unfold iff_def)
apply (assumption | rule conjL impL basic)+
done
lemma iff_refl: "$H ⊢ $E, (P ⟷ P), $F"
apply (rule iffR basic)+
done
lemma TrueR: "$H ⊢ $E, True, $F"
apply (unfold True_def)
apply (rule impR)
apply (rule basic)
done
lemma the_equality:
assumes p1: "$H ⊢ $E, P(a), $F"
and p2: "⋀x. $H, P(x) ⊢ $E, x=a, $F"
shows "$H ⊢ $E, (THE x. P(x)) = a, $F"
apply (rule cut)
apply (rule_tac [2] p2)
apply (rule The, rule thinR, rule exchRS, rule p1)
apply (rule thinR, rule exchRS, rule p2)
done
lemma allL_thin: "$H, P(x), $G ⊢ $E ⟹ $H, ∀x. P(x), $G ⊢ $E"
apply (rule allL)
apply (erule thinL)
done
lemma exR_thin: "$H ⊢ $E, P(x), $F ⟹ $H ⊢ $E, ∃x. P(x), $F"
apply (rule exR)
apply (erule thinR)
done
lemmas [safe] =
iffR iffL
notR notL
impR impL
disjR disjL
conjR conjL
FalseL TrueR
refl basic
ML ‹val prop_pack = Cla.get_pack \<^context>›
lemmas [safe] = exL allR
lemmas [unsafe] = the_equality exR_thin allL_thin
ML ‹val LK_pack = Cla.get_pack \<^context>›
ML ‹
val LK_dup_pack =
Cla.put_pack prop_pack \<^context>
|> fold_rev Cla.add_safe @{thms allR exL}
|> fold_rev Cla.add_unsafe @{thms allL exR the_equality}
|> Cla.get_pack;
›
method_setup fast_prop =
‹Scan.succeed (fn ctxt => SIMPLE_METHOD' (Cla.fast_tac (Cla.put_pack prop_pack ctxt)))›
method_setup fast_dup =
‹Scan.succeed (fn ctxt => SIMPLE_METHOD' (Cla.fast_tac (Cla.put_pack LK_dup_pack ctxt)))›
method_setup best_dup =
‹Scan.succeed (fn ctxt => SIMPLE_METHOD' (Cla.best_tac (Cla.put_pack LK_dup_pack ctxt)))›
method_setup lem = ‹
Attrib.thm >> (fn th => fn ctxt =>
SIMPLE_METHOD' (fn i =>
resolve_tac ctxt [@{thm thinR} RS @{thm cut}] i THEN
REPEAT (resolve_tac ctxt @{thms thinL} i) THEN
resolve_tac ctxt [th] i))
›
lemma mp_R:
assumes major: "$H ⊢ $E, $F, P ⟶ Q"
and minor: "$H ⊢ $E, $F, P"
shows "$H ⊢ $E, Q, $F"
apply (rule thinRS [THEN cut], rule major)
apply step
apply (rule thinR, rule minor)
done
lemma mp_L:
assumes major: "$H, $G ⊢ $E, P ⟶ Q"
and minor: "$H, $G, Q ⊢ $E"
shows "$H, P, $G ⊢ $E"
apply (rule thinL [THEN cut], rule major)
apply step
apply (rule thinL, rule minor)
done
lemma R_of_imp:
assumes major: "⊢ P ⟶ Q"
and minor: "$H ⊢ $E, $F, P"
shows "$H ⊢ $E, Q, $F"
apply (rule mp_R)
apply (rule_tac [2] minor)
apply (rule thinRS, rule major [THEN thinLS])
done
lemma L_of_imp:
assumes major: "⊢ P ⟶ Q"
and minor: "$H, $G, Q ⊢ $E"
shows "$H, P, $G ⊢ $E"
apply (rule mp_L)
apply (rule_tac [2] minor)
apply (rule thinRS, rule major [THEN thinLS])
done
lemma backwards_impR:
assumes prem: "$H, $G ⊢ $E, $F, P ⟶ Q"
shows "$H, P, $G ⊢ $E, Q, $F"
apply (rule mp_L)
apply (rule_tac [2] basic)
apply (rule thinR, rule prem)
done
lemma conjunct1: "⊢P ∧ Q ⟹ ⊢P"
apply (erule thinR [THEN cut])
apply fast
done
lemma conjunct2: "⊢P ∧ Q ⟹ ⊢Q"
apply (erule thinR [THEN cut])
apply fast
done
lemma spec: "⊢ (∀x. P(x)) ⟹ ⊢ P(x)"
apply (erule thinR [THEN cut])
apply fast
done
lemma sym: "⊢ a = b ⟶ b = a"
by (safe add!: subst)
lemma trans: "⊢ a = b ⟶ b = c ⟶ a = c"
by (safe add!: subst)
lemmas symL = sym [THEN L_of_imp]
lemmas symR = sym [THEN R_of_imp]
lemma transR: "⟦$H⊢ $E, $F, a = b; $H⊢ $E, $F, b=c⟧ ⟹ $H⊢ $E, a = c, $F"
by (rule trans [THEN R_of_imp, THEN mp_R])
lemma def_imp_iff: "(A ≡ B) ⟹ ⊢ A ⟷ B"
apply unfold
apply (rule iff_refl)
done
lemma meta_eq_to_obj_eq: "(A ≡ B) ⟹ ⊢ A = B"
apply unfold
apply (rule refl)
done
lemma if_True: "⊢ (if True then x else y) = x"
unfolding If_def by fast
lemma if_False: "⊢ (if False then x else y) = y"
unfolding If_def by fast
lemma if_P: "⊢ P ⟹ ⊢ (if P then x else y) = x"
apply (unfold If_def)
apply (erule thinR [THEN cut])
apply fast
done
lemma if_not_P: "⊢ ¬ P ⟹ ⊢ (if P then x else y) = y"
apply (unfold If_def)
apply (erule thinR [THEN cut])
apply fast
done
end