Theory Pure
theory Pure
keywords
"!!" "!" "+" ":" ";" "<" "<=" "==" "=>" "?" "[" "―" "≡" "↽" "⇀" "⇌"
"⊆" "]" "binder" "by" "identifier" "in" "infix" "infixl" "infixr" "is" "open" "output"
"overloaded" "passive" "pervasive" "premises" "structure" "unchecked"
and "private" "qualified" :: before_command
and "assumes" "constrains" "defines" "fixes" "for" "if" "includes" "notes" "rewrites"
"obtains" "shows" "when" "where" "|" :: quasi_command
and "text" "txt" :: document_body
and "text_raw" :: document_raw
and "default_sort" :: thy_decl
and "typedecl" "nonterminal" "judgment" "consts" "syntax" "no_syntax" "translations"
"no_translations" "type_notation" "no_type_notation" "notation" "no_notation" "alias"
"type_alias" "declare" "hide_class" "hide_type" "hide_const" "hide_fact" :: thy_decl
and "type_synonym" "definition" "abbreviation" "lemmas" :: thy_defn
and "axiomatization" :: thy_stmt
and "external_file" "bibtex_file" "ROOTS_file" :: thy_load
and "generate_file" :: thy_decl
and "export_generated_files" :: diag
and "scala_build_generated_files" :: diag
and "compile_generated_files" :: diag and "external_files" "export_files" "export_prefix"
and "export_classpath"
and "ML_file" "ML_file_debug" "ML_file_no_debug" :: thy_load % "ML"
and "SML_file" "SML_file_debug" "SML_file_no_debug" :: thy_load % "ML"
and "SML_import" "SML_export" "ML_export" :: thy_decl % "ML"
and "ML_prf" :: prf_decl % "proof"
and "ML_val" "ML_command" :: diag % "ML"
and "simproc_setup" :: thy_decl % "ML"
and "setup" "local_setup" "attribute_setup" "method_setup"
"declaration" "syntax_declaration"
"parse_ast_translation" "parse_translation" "print_translation"
"typed_print_translation" "print_ast_translation" "oracle" :: thy_decl % "ML"
and "bundle" :: thy_decl_block
and "unbundle" :: thy_decl
and "include" "including" :: prf_decl
and "print_bundles" :: diag
and "context" "locale" "experiment" :: thy_decl_block
and "interpret" :: prf_goal % "proof"
and "interpretation" "global_interpretation" "sublocale" :: thy_goal
and "class" :: thy_decl_block
and "subclass" :: thy_goal
and "instantiation" :: thy_decl_block
and "instance" :: thy_goal
and "overloading" :: thy_decl_block
and "opening" :: quasi_command
and "code_datatype" :: thy_decl
and "theorem" "lemma" "corollary" "proposition" :: thy_goal_stmt
and "schematic_goal" :: thy_goal_stmt
and "notepad" :: thy_decl_block
and "have" :: prf_goal % "proof"
and "hence" :: prf_goal % "proof"
and "show" :: prf_asm_goal % "proof"
and "thus" :: prf_asm_goal % "proof"
and "then" "from" "with" :: prf_chain % "proof"
and "note" :: prf_decl % "proof"
and "supply" :: prf_script % "proof"
and "using" "unfolding" :: prf_decl % "proof"
and "fix" "assume" "presume" "define" :: prf_asm % "proof"
and "consider" :: prf_goal % "proof"
and "obtain" :: prf_asm_goal % "proof"
and "let" "write" :: prf_decl % "proof"
and "case" :: prf_asm % "proof"
and "{" :: prf_open % "proof"
and "}" :: prf_close % "proof"
and "next" :: next_block % "proof"
and "qed" :: qed_block % "proof"
and "by" ".." "." "sorry" "\<proof>" :: "qed" % "proof"
and "done" :: "qed_script" % "proof"
and "oops" :: qed_global % "proof"
and "defer" "prefer" "apply" :: prf_script % "proof"
and "apply_end" :: prf_script % "proof"
and "subgoal" :: prf_script_goal % "proof"
and "proof" :: prf_block % "proof"
and "also" "moreover" :: prf_decl % "proof"
and "finally" "ultimately" :: prf_chain % "proof"
and "back" :: prf_script % "proof"
and "help" "print_commands" "print_options" "print_context" "print_theory"
"print_definitions" "print_syntax" "print_abbrevs" "print_defn_rules"
"print_theorems" "print_locales" "print_classes" "print_locale"
"print_interps" "print_attributes"
"print_simpset" "print_rules" "print_trans_rules" "print_methods"
"print_antiquotations" "print_ML_antiquotations" "thy_deps"
"locale_deps" "class_deps" "thm_deps" "thm_oracles" "print_term_bindings"
"print_facts" "print_cases" "print_statement" "thm" "prf" "full_prf"
"prop" "term" "typ" "print_codesetup" "print_context_tracing" "unused_thms" :: diag
and "print_state" :: diag
and "welcome" :: diag
and "end" :: thy_end
and "realizers" :: thy_decl
and "realizability" :: thy_decl
and "extract_type" "extract" :: thy_decl
and "find_theorems" "find_consts" :: diag
and "named_theorems" :: thy_decl
abbrevs "\\tag" = "✐‹tag ›"
and "===>" = "===>"
and "--->" = "─→"
and "hence" "thus" "default_sort" "simproc_setup" "apply_end" "realizers" "realizability" = ""
and "hence" = "then have"
and "thus" = "then show"
begin
section ‹Isar commands›
subsection ‹Other files›
ML ‹
local
val _ =
Outer_Syntax.command \<^command_keyword>‹external_file› "formal dependency on external file"
(Resources.provide_parse_file >> (fn get_file => Toplevel.theory (#2 o get_file)));
val _ =
Outer_Syntax.command \<^command_keyword>‹bibtex_file› "check bibtex database file in Prover IDE"
(Resources.provide_parse_file >> (fn get_file =>
Toplevel.theory (fn thy =>
let
val ({lines, pos, ...}, thy') = get_file thy;
val _ = Bibtex.check_database_output pos (cat_lines lines);
in thy' end)));
val _ =
Outer_Syntax.command \<^command_keyword>‹ROOTS_file› "session ROOTS file"
(Resources.provide_parse_file >> (fn get_file =>
Toplevel.theory (fn thy =>
let
val ({src_path, lines, pos = pos0, ...}, thy') = get_file thy;
val ctxt = Proof_Context.init_global thy';
val dir = Path.dir (Path.expand (Resources.master_directory thy' + src_path));
val _ =
(lines, pos0) |-> fold (fn line => fn pos1 =>
let
val pos2 = Position.symbol_explode line pos1;
val range = Position.range (pos1, pos2);
val source = Input.source true line range;
val _ =
if line = "" then ()
else if String.isPrefix "#" line then
Context_Position.report ctxt (#1 range) Markup.comment
else
(ignore (Resources.check_session_dir ctxt (SOME dir) source)
handle ERROR msg => Output.error_message msg);
in pos2 |> Position.symbol "\n" end);
in thy' end)));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹generate_file›
"generate source file, with antiquotations"
(Parse.path_binding -- (\<^keyword>‹=› |-- Parse.embedded_input)
>> Generated_Files.generate_file_cmd);
val files_in_theory =
(Parse.underscore >> K [] || Scan.repeat1 Parse.path_binding) --
Scan.option (\<^keyword>‹(› |-- Parse.!!! (\<^keyword>‹in› |-- Parse.theory_name --| \<^keyword>‹)›));
val _ =
Outer_Syntax.command \<^command_keyword>‹export_generated_files›
"export generated files from given theories"
(Parse.and_list1 files_in_theory >> (fn args =>
Toplevel.keep (fn st =>
Generated_Files.export_generated_files_cmd (Toplevel.context_of st) args)));
val base_dir =
Scan.optional (\<^keyword>‹(› |--
Parse.!!! (\<^keyword>‹in› |-- Parse.path_input --| \<^keyword>‹)›)) (Input.string "");
val external_files = Scan.repeat1 Parse.path_input -- base_dir;
val exe = Parse.reserved "exe" >> K true || Parse.reserved "executable" >> K false;
val executable = \<^keyword>‹(› |-- Parse.!!! (exe --| \<^keyword>‹)›) >> SOME || Scan.succeed NONE;
val export_files = Scan.repeat1 Parse.path_binding -- executable;
val _ =
Outer_Syntax.command \<^command_keyword>‹compile_generated_files›
"compile generated files and export results"
(Parse.and_list files_in_theory --
Scan.optional (\<^keyword>‹external_files› |-- Parse.!!! (Parse.and_list1 external_files)) [] --
Scan.optional (\<^keyword>‹export_files› |-- Parse.!!! (Parse.and_list1 export_files)) [] --
Scan.optional (\<^keyword>‹export_prefix› |-- Parse.path_binding) ("", Position.none) --
(Parse.where_ |-- Parse.!!! Parse.ML_source)
>> (fn ((((args, external), export), export_prefix), source) =>
Toplevel.keep (fn st =>
Generated_Files.compile_generated_files_cmd
(Toplevel.context_of st) args external export export_prefix source)));
val _ =
Outer_Syntax.command \<^command_keyword>‹scala_build_generated_files›
"build and export Isabelle/Scala/Java module"
(Parse.and_list files_in_theory --
Scan.optional (\<^keyword>‹external_files› |-- Parse.!!! (Parse.and_list1 external_files)) []
>> (fn (args, external) =>
Toplevel.keep (fn st =>
Generated_Files.scala_build_generated_files_cmd
(Toplevel.context_of st) args external)));
in end›
external_file ‹ROOT0.ML›
external_file ‹ROOT.ML›
subsection ‹Embedded ML text›
ML ‹
local
val semi = Scan.option \<^keyword>‹;›;
val _ =
Outer_Syntax.command \<^command_keyword>‹ML_file› "read and evaluate Isabelle/ML file"
(Resources.parse_file --| semi >> ML_File.ML NONE);
val _ =
Outer_Syntax.command \<^command_keyword>‹ML_file_debug›
"read and evaluate Isabelle/ML file (with debugger information)"
(Resources.parse_file --| semi >> ML_File.ML (SOME true));
val _ =
Outer_Syntax.command \<^command_keyword>‹ML_file_no_debug›
"read and evaluate Isabelle/ML file (no debugger information)"
(Resources.parse_file --| semi >> ML_File.ML (SOME false));
val _ =
Outer_Syntax.command \<^command_keyword>‹SML_file› "read and evaluate Standard ML file"
(Resources.parse_file --| semi >> ML_File.SML NONE);
val _ =
Outer_Syntax.command \<^command_keyword>‹SML_file_debug›
"read and evaluate Standard ML file (with debugger information)"
(Resources.parse_file --| semi >> ML_File.SML (SOME true));
val _ =
Outer_Syntax.command \<^command_keyword>‹SML_file_no_debug›
"read and evaluate Standard ML file (no debugger information)"
(Resources.parse_file --| semi >> ML_File.SML (SOME false));
val _ =
Outer_Syntax.command \<^command_keyword>‹SML_export› "evaluate SML within Isabelle/ML environment"
(Parse.ML_source >> (fn source =>
let
val flags: ML_Compiler.flags =
{environment = ML_Env.SML_export, redirect = false, verbose = true, catch_all = true,
debug = NONE, writeln = writeln, warning = warning};
in
Toplevel.theory
(Context.theory_map (ML_Context.exec (fn () => ML_Context.eval_source flags source)))
end));
val _ =
Outer_Syntax.command \<^command_keyword>‹SML_import› "evaluate Isabelle/ML within SML environment"
(Parse.ML_source >> (fn source =>
let
val flags: ML_Compiler.flags =
{environment = ML_Env.SML_import, redirect = false, verbose = true, catch_all = true,
debug = NONE, writeln = writeln, warning = warning};
in
Toplevel.generic_theory
(ML_Context.exec (fn () => ML_Context.eval_source flags source) #>
Local_Theory.propagate_ml_env)
end));
val _ =
Outer_Syntax.command ("ML_export", ⌂)
"ML text within theory or local theory, and export to bootstrap environment"
(Parse.ML_source >> (fn source =>
Toplevel.generic_theory (fn context =>
context
|> Config.put_generic ML_Env.ML_environment ML_Env.Isabelle
|> Config.put_generic ML_Env.ML_write_global true
|> ML_Context.exec (fn () =>
ML_Context.eval_source (ML_Compiler.verbose true ML_Compiler.flags) source)
|> Config.restore_generic ML_Env.ML_write_global context
|> Config.restore_generic ML_Env.ML_environment context
|> Local_Theory.propagate_ml_env)));
val _ =
Outer_Syntax.command \<^command_keyword>‹ML_prf› "ML text within proof"
(Parse.ML_source >> (fn source =>
Toplevel.proof (Proof.map_context (Context.proof_map
(ML_Context.exec (fn () =>
ML_Context.eval_source (ML_Compiler.verbose true ML_Compiler.flags) source))) #>
Proof.propagate_ml_env)));
val _ =
Outer_Syntax.command \<^command_keyword>‹ML_val› "diagnostic ML text"
(Parse.ML_source >> Isar_Cmd.ml_diag true);
val _ =
Outer_Syntax.command \<^command_keyword>‹ML_command› "diagnostic ML text (silent)"
(Parse.ML_source >> Isar_Cmd.ml_diag false);
val _ =
Outer_Syntax.command \<^command_keyword>‹setup› "ML setup for global theory"
(Parse.ML_source >> (Toplevel.theory o Isar_Cmd.setup));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹local_setup› "ML setup for local theory"
(Parse.ML_source >> Isar_Cmd.local_setup);
val _ =
Outer_Syntax.command \<^command_keyword>‹oracle› "declare oracle"
(Parse.range Parse.name -- Parse.!!! (\<^keyword>‹=› |-- Parse.ML_source) >>
(fn (x, y) => Toplevel.theory (Isar_Cmd.oracle x y)));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹attribute_setup› "define attribute in ML"
(Parse.name_position --
Parse.!!! (\<^keyword>‹=› |-- Parse.ML_source -- Scan.optional Parse.embedded "")
>> (fn (name, (txt, cmt)) => Attrib.attribute_setup name txt cmt));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹method_setup› "define proof method in ML"
(Parse.name_position --
Parse.!!! (\<^keyword>‹=› |-- Parse.ML_source -- Scan.optional Parse.embedded "")
>> (fn (name, (txt, cmt)) => Method.method_setup name txt cmt));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹declaration› "generic ML declaration"
(Parse.opt_keyword "pervasive" -- Parse.ML_source
>> (fn (pervasive, txt) => Isar_Cmd.declaration {syntax = false, pervasive = pervasive} txt));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹syntax_declaration› "generic ML syntax declaration"
(Parse.opt_keyword "pervasive" -- Parse.ML_source
>> (fn (pervasive, txt) => Isar_Cmd.declaration {syntax = true, pervasive = pervasive} txt));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹simproc_setup› "define simproc in ML"
Simplifier.simproc_setup_command;
in end›
subsection ‹Theory commands›
subsubsection ‹Sorts and types›
ML ‹
local
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹default_sort›
"declare default sort for explicit type variables"
(Parse.sort >> (fn s => fn lthy => Local_Theory.set_defsort (Syntax.read_sort lthy s) lthy));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹typedecl› "type declaration"
(Parse.type_args -- Parse.binding -- Parse.opt_mixfix
>> (fn ((args, a), mx) =>
Typedecl.typedecl {final = true} (a, map (rpair dummyS) args, mx) #> snd));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹type_synonym› "declare type abbreviation"
(Parse.type_args -- Parse.binding --
(\<^keyword>‹=› |-- Parse.!!! (Parse.typ -- Parse.opt_mixfix'))
>> (fn ((args, a), (rhs, mx)) => snd o Typedecl.abbrev_cmd (a, args, mx) rhs));
in end›
subsubsection ‹Consts›
ML ‹
local
val _ =
Outer_Syntax.command \<^command_keyword>‹judgment› "declare object-logic judgment"
(Parse.const_binding >> (Toplevel.theory o Object_Logic.add_judgment_cmd));
val _ =
Outer_Syntax.command \<^command_keyword>‹consts› "declare constants"
(Scan.repeat1 Parse.const_binding >> (Toplevel.theory o Sign.add_consts_cmd));
in end›
subsubsection ‹Syntax and translations›
ML ‹
local
val _ =
Outer_Syntax.command \<^command_keyword>‹nonterminal›
"declare syntactic type constructors (grammar nonterminal symbols)"
(Parse.and_list1 Parse.binding >> (Toplevel.theory o Sign.add_nonterminals_global));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹syntax› "add raw syntax clauses"
(Parse.syntax_mode -- Scan.repeat1 Parse.const_decl
>> uncurry (Local_Theory.syntax_cmd true));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹no_syntax› "delete raw syntax clauses"
(Parse.syntax_mode -- Scan.repeat1 Parse.const_decl
>> uncurry (Local_Theory.syntax_cmd false));
val trans_pat =
Scan.optional
(\<^keyword>‹(› |-- Parse.!!! (Parse.inner_syntax Parse.name --| \<^keyword>‹)›)) "logic"
-- Parse.inner_syntax Parse.string;
fun trans_arrow toks =
((\<^keyword>‹⇀› || \<^keyword>‹=>›) >> K Syntax.Parse_Rule ||
(\<^keyword>‹↽› || \<^keyword>‹<=›) >> K Syntax.Print_Rule ||
(\<^keyword>‹⇌› || \<^keyword>‹==›) >> K Syntax.Parse_Print_Rule) toks;
val trans_line =
trans_pat -- Parse.!!! (trans_arrow -- trans_pat)
>> (fn (left, (arr, right)) => arr (left, right));
val _ =
Outer_Syntax.command \<^command_keyword>‹translations› "add syntax translation rules"
(Scan.repeat1 trans_line >> (Toplevel.theory o Isar_Cmd.translations));
val _ =
Outer_Syntax.command \<^command_keyword>‹no_translations› "delete syntax translation rules"
(Scan.repeat1 trans_line >> (Toplevel.theory o Isar_Cmd.no_translations));
in end›
subsubsection ‹Translation functions›
ML ‹
local
val _ =
Outer_Syntax.command \<^command_keyword>‹parse_ast_translation›
"install parse ast translation functions"
(Parse.ML_source >> (Toplevel.theory o Isar_Cmd.parse_ast_translation));
val _ =
Outer_Syntax.command \<^command_keyword>‹parse_translation›
"install parse translation functions"
(Parse.ML_source >> (Toplevel.theory o Isar_Cmd.parse_translation));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_translation›
"install print translation functions"
(Parse.ML_source >> (Toplevel.theory o Isar_Cmd.print_translation));
val _ =
Outer_Syntax.command \<^command_keyword>‹typed_print_translation›
"install typed print translation functions"
(Parse.ML_source >> (Toplevel.theory o Isar_Cmd.typed_print_translation));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_ast_translation›
"install print ast translation functions"
(Parse.ML_source >> (Toplevel.theory o Isar_Cmd.print_ast_translation));
in end›
subsubsection ‹Specifications›
ML ‹
local
val _ =
Outer_Syntax.local_theory' \<^command_keyword>‹definition› "constant definition"
(Scan.option Parse_Spec.constdecl -- (Parse_Spec.opt_thm_name ":" -- Parse.prop) --
Parse_Spec.if_assumes -- Parse.for_fixes >> (fn (((decl, spec), prems), params) =>
#2 oo Specification.definition_cmd decl params prems spec));
val _ =
Outer_Syntax.local_theory' \<^command_keyword>‹abbreviation› "constant abbreviation"
(Parse.syntax_mode -- Scan.option Parse_Spec.constdecl -- Parse.prop -- Parse.for_fixes
>> (fn (((mode, decl), spec), params) => Specification.abbreviation_cmd mode decl params spec));
val axiomatization =
Parse.and_list1 (Parse_Spec.thm_name ":" -- Parse.prop) --
Parse_Spec.if_assumes -- Parse.for_fixes >> (fn ((a, b), c) => (c, b, a));
val _ =
Outer_Syntax.command \<^command_keyword>‹axiomatization› "axiomatic constant specification"
(Scan.optional Parse.vars [] --
Scan.optional (Parse.where_ |-- Parse.!!! axiomatization) ([], [], [])
>> (fn (a, (b, c, d)) => Toplevel.theory (#2 o Specification.axiomatization_cmd a b c d)));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹alias› "name-space alias for constant"
(Parse.binding -- (Parse.!!! \<^keyword>‹=› |-- Parse.name_position)
>> Specification.alias_cmd);
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹type_alias› "name-space alias for type constructor"
(Parse.binding -- (Parse.!!! \<^keyword>‹=› |-- Parse.name_position)
>> Specification.type_alias_cmd);
in end›
subsubsection ‹Notation›
ML ‹
local
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹type_notation›
"add concrete syntax for type constructors"
(Parse.syntax_mode -- Parse.and_list1 (Parse.type_const -- Parse.mixfix)
>> (fn (mode, args) => Local_Theory.type_notation_cmd true mode args));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹no_type_notation›
"delete concrete syntax for type constructors"
(Parse.syntax_mode -- Parse.and_list1 (Parse.type_const -- Parse.mixfix)
>> (fn (mode, args) => Local_Theory.type_notation_cmd false mode args));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹notation›
"add concrete syntax for constants / fixed variables"
(Parse.syntax_mode -- Parse.and_list1 (Parse.const -- Parse.mixfix)
>> (fn (mode, args) => Local_Theory.notation_cmd true mode args));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹no_notation›
"delete concrete syntax for constants / fixed variables"
(Parse.syntax_mode -- Parse.and_list1 (Parse.const -- Parse.mixfix)
>> (fn (mode, args) => Local_Theory.notation_cmd false mode args));
in end›
subsubsection ‹Theorems›
ML ‹
local
val long_keyword =
Parse_Spec.includes >> K "" ||
Parse_Spec.long_statement_keyword;
val long_statement =
Scan.optional (Parse_Spec.opt_thm_name ":" --| Scan.ahead long_keyword) Binding.empty_atts --
Scan.optional Parse_Spec.includes [] -- Parse_Spec.long_statement
>> (fn ((binding, includes), (elems, concl)) => (true, binding, includes, elems, concl));
val short_statement =
Parse_Spec.statement -- Parse_Spec.if_statement -- Parse.for_fixes
>> (fn ((shows, assumes), fixes) =>
(false, Binding.empty_atts, [], [Element.Fixes fixes, Element.Assumes assumes],
Element.Shows shows));
fun theorem spec schematic descr =
Outer_Syntax.local_theory_to_proof' spec ("state " ^ descr)
((long_statement || short_statement) >> (fn (long, binding, includes, elems, concl) =>
((if schematic then Specification.schematic_theorem_cmd else Specification.theorem_cmd)
long Thm.theoremK NONE (K I) binding includes elems concl)));
val _ = theorem \<^command_keyword>‹theorem› false "theorem";
val _ = theorem \<^command_keyword>‹lemma› false "lemma";
val _ = theorem \<^command_keyword>‹corollary› false "corollary";
val _ = theorem \<^command_keyword>‹proposition› false "proposition";
val _ = theorem \<^command_keyword>‹schematic_goal› true "schematic goal";
in end›
ML ‹
local
val _ =
Outer_Syntax.local_theory' \<^command_keyword>‹lemmas› "define theorems"
(Parse_Spec.name_facts -- Parse.for_fixes >>
(fn (facts, fixes) => #2 oo Specification.theorems_cmd Thm.theoremK facts fixes));
val _ =
Outer_Syntax.local_theory' \<^command_keyword>‹declare› "declare theorems"
(Parse.and_list1 Parse.thms1 -- Parse.for_fixes
>> (fn (facts, fixes) =>
#2 oo Specification.theorems_cmd "" [(Binding.empty_atts, flat facts)] fixes));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹named_theorems›
"declare named collection of theorems"
(Parse.and_list1 (Parse.binding -- Scan.optional Parse.embedded "") >>
fold (fn (b, descr) => snd o Named_Theorems.declare b descr));
in end›
subsubsection ‹Hide names›
ML ‹
local
fun hide_names command_keyword what hide parse prep =
Outer_Syntax.command command_keyword ("hide " ^ what ^ " from name space")
((Parse.opt_keyword "open" >> not) -- Scan.repeat1 parse >> (fn (fully, args) =>
(Toplevel.theory (fn thy =>
let val ctxt = Proof_Context.init_global thy
in fold (hide fully o prep ctxt) args thy end))));
val _ =
hide_names \<^command_keyword>‹hide_class› "classes" Sign.hide_class Parse.class
Proof_Context.read_class;
val _ =
hide_names \<^command_keyword>‹hide_type› "types" Sign.hide_type Parse.type_const
((#1 o dest_Type) oo Proof_Context.read_type_name {proper = true, strict = false});
val _ =
hide_names \<^command_keyword>‹hide_const› "consts" Sign.hide_const Parse.const
((#1 o dest_Const) oo Proof_Context.read_const {proper = true, strict = false});
val _ =
hide_names \<^command_keyword>‹hide_fact› "facts" Global_Theory.hide_fact
Parse.name_position (Global_Theory.check_fact o Proof_Context.theory_of);
in end›
subsection ‹Bundled declarations›
ML ‹
local
val _ =
Outer_Syntax.maybe_begin_local_theory \<^command_keyword>‹bundle›
"define bundle of declarations"
((Parse.binding --| \<^keyword>‹=›) -- Parse.thms1 -- Parse.for_fixes
>> (uncurry Bundle.bundle_cmd))
(Parse.binding --| Parse.begin >> Bundle.init);
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹unbundle›
"activate declarations from bundle in local theory"
(Scan.repeat1 Parse.name_position >> Bundle.unbundle_cmd);
val _ =
Outer_Syntax.command \<^command_keyword>‹include›
"activate declarations from bundle in proof body"
(Scan.repeat1 Parse.name_position >> (Toplevel.proof o Bundle.include_cmd));
val _ =
Outer_Syntax.command \<^command_keyword>‹including›
"activate declarations from bundle in goal refinement"
(Scan.repeat1 Parse.name_position >> (Toplevel.proof o Bundle.including_cmd));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_bundles›
"print bundles of declarations"
(Parse.opt_bang >> (fn b => Toplevel.keep (Bundle.print_bundles b o Toplevel.context_of)));
in end›
subsection ‹Local theory specifications›
subsubsection ‹Specification context›
ML ‹
local
val _ =
Outer_Syntax.command \<^command_keyword>‹context› "begin local theory context"
(((Parse.name_position -- Scan.optional Parse_Spec.opening [])
>> (fn (name, incls) => Toplevel.begin_main_target true (Target_Context.context_begin_named_cmd incls name)) ||
Scan.optional Parse_Spec.includes [] -- Scan.repeat Parse_Spec.context_element
>> (fn (incls, elems) => Toplevel.begin_nested_target (Target_Context.context_begin_nested_cmd incls elems)))
--| Parse.begin);
val _ =
Outer_Syntax.command \<^command_keyword>‹end› "end context"
(Scan.succeed
(Toplevel.exit o Toplevel.end_main_target o Toplevel.end_nested_target o
Toplevel.end_proof (K Proof.end_notepad)));
in end›
subsubsection ‹Locales and interpretation›
ML ‹
local
val locale_context_elements =
Scan.repeat1 Parse_Spec.context_element;
val locale_val =
((Parse_Spec.locale_expression -- Scan.optional Parse_Spec.opening [])
|| Parse_Spec.opening >> pair ([], []))
-- Scan.optional (\<^keyword>‹+› |-- Parse.!!! locale_context_elements) []
|| locale_context_elements >> pair (([], []), []);
val _ =
Outer_Syntax.command \<^command_keyword>‹locale› "define named specification context"
(Parse.binding --
Scan.optional (\<^keyword>‹=› |-- Parse.!!! locale_val) ((([], []), []), []) -- Parse.opt_begin
>> (fn ((name, ((expr, includes), elems)), begin) =>
Toplevel.begin_main_target begin
(Expression.add_locale_cmd name Binding.empty includes expr elems #> snd)));
val _ =
Outer_Syntax.command \<^command_keyword>‹experiment› "open private specification context"
(Scan.repeat Parse_Spec.context_element --| Parse.begin
>> (fn elems =>
Toplevel.begin_main_target true (Experiment.experiment_cmd elems #> snd)));
val _ =
Outer_Syntax.command \<^command_keyword>‹interpret›
"prove interpretation of locale expression in proof context"
(Parse.!!! Parse_Spec.locale_expression >> (fn expr =>
Toplevel.proof (Interpretation.interpret_cmd expr)));
val interpretation_args_with_defs =
Parse.!!! Parse_Spec.locale_expression --
(Scan.optional (\<^keyword>‹defines› |-- Parse.and_list1 (Parse_Spec.opt_thm_name ":"
-- ((Parse.binding -- Parse.opt_mixfix') --| \<^keyword>‹=› -- Parse.term))) ([]));
val _ =
Outer_Syntax.local_theory_to_proof \<^command_keyword>‹global_interpretation›
"prove interpretation of locale expression into global theory"
(interpretation_args_with_defs >> (fn (expr, defs) =>
Interpretation.global_interpretation_cmd expr defs));
val _ =
Outer_Syntax.command \<^command_keyword>‹sublocale›
"prove sublocale relation between a locale and a locale expression"
((Parse.name_position --| (\<^keyword>‹⊆› || \<^keyword>‹<›) --
interpretation_args_with_defs >> (fn (loc, (expr, defs)) =>
Toplevel.theory_to_proof (Interpretation.global_sublocale_cmd loc expr defs)))
|| interpretation_args_with_defs >> (fn (expr, defs) =>
Toplevel.local_theory_to_proof NONE NONE (Interpretation.sublocale_cmd expr defs)));
val _ =
Outer_Syntax.command \<^command_keyword>‹interpretation›
"prove interpretation of locale expression in local theory or into global theory"
(Parse.!!! Parse_Spec.locale_expression >> (fn expr =>
Toplevel.local_theory_to_proof NONE NONE
(Interpretation.isar_interpretation_cmd expr)));
in end›
subsubsection ‹Type classes›
ML ‹
local
val class_context_elements =
Scan.repeat1 Parse_Spec.context_element;
val class_val =
((Parse_Spec.class_expression -- Scan.optional Parse_Spec.opening [])
|| Parse_Spec.opening >> pair [])
-- Scan.optional (\<^keyword>‹+› |-- Parse.!!! class_context_elements) [] ||
class_context_elements >> pair ([], []);
val _ =
Outer_Syntax.command \<^command_keyword>‹class› "define type class"
(Parse.binding -- Scan.optional (\<^keyword>‹=› |-- class_val) (([], []), []) -- Parse.opt_begin
>> (fn ((name, ((supclasses, includes), elems)), begin) =>
Toplevel.begin_main_target begin
(Class_Declaration.class_cmd name includes supclasses elems #> snd)));
val _ =
Outer_Syntax.local_theory_to_proof \<^command_keyword>‹subclass› "prove a subclass relation"
(Parse.class >> Class_Declaration.subclass_cmd);
val _ =
Outer_Syntax.command \<^command_keyword>‹instantiation› "instantiate and prove type arity"
(Parse.multi_arity --| Parse.begin
>> (fn arities => Toplevel.begin_main_target true (Class.instantiation_cmd arities)));
val _ =
Outer_Syntax.command \<^command_keyword>‹instance› "prove type arity or subclass relation"
((Parse.class --
((\<^keyword>‹⊆› || \<^keyword>‹<›) |-- Parse.!!! Parse.class) >> Class.classrel_cmd ||
Parse.multi_arity >> Class.instance_arity_cmd) >> Toplevel.theory_to_proof ||
Scan.succeed (Toplevel.local_theory_to_proof NONE NONE (Class.instantiation_instance I)));
in end›
subsubsection ‹Arbitrary overloading›
ML ‹
local
val _ =
Outer_Syntax.command \<^command_keyword>‹overloading› "overloaded definitions"
(Scan.repeat1 (Parse.name --| (\<^keyword>‹==› || \<^keyword>‹≡›) -- Parse.term --
Scan.optional (\<^keyword>‹(› |-- (\<^keyword>‹unchecked› >> K false) --| \<^keyword>‹)›) true
>> Scan.triple1) --| Parse.begin
>> (fn operations => Toplevel.begin_main_target true (Overloading.overloading_cmd operations)));
in end›
subsection ‹Proof commands›
ML ‹
local
val _ =
Outer_Syntax.local_theory_to_proof \<^command_keyword>‹notepad› "begin proof context"
(Parse.begin >> K Proof.begin_notepad);
in end›
subsubsection ‹Statements›
ML ‹
local
val structured_statement =
Parse_Spec.statement -- Parse_Spec.cond_statement -- Parse.for_fixes
>> (fn ((shows, (strict, assumes)), fixes) => (strict, fixes, assumes, shows));
val _ =
Outer_Syntax.command \<^command_keyword>‹have› "state local goal"
(structured_statement >> (fn (a, b, c, d) =>
Toplevel.proof' (fn int => Proof.have_cmd a NONE (K I) b c d int #> #2)));
val _ =
Outer_Syntax.command \<^command_keyword>‹show› "state local goal, to refine pending subgoals"
(structured_statement >> (fn (a, b, c, d) =>
Toplevel.proof' (fn int => Proof.show_cmd a NONE (K I) b c d int #> #2)));
val _ =
Outer_Syntax.command \<^command_keyword>‹hence› "old-style alias of \"then have\""
(structured_statement >> (fn (a, b, c, d) =>
Toplevel.proof' (fn int => Proof.chain #> Proof.have_cmd a NONE (K I) b c d int #> #2)));
val _ =
Outer_Syntax.command \<^command_keyword>‹thus› "old-style alias of \"then show\""
(structured_statement >> (fn (a, b, c, d) =>
Toplevel.proof' (fn int => Proof.chain #> Proof.show_cmd a NONE (K I) b c d int #> #2)));
in end›
subsubsection ‹Local facts›
ML ‹
local
val facts = Parse.and_list1 Parse.thms1;
val _ =
Outer_Syntax.command \<^command_keyword>‹then› "forward chaining"
(Scan.succeed (Toplevel.proof Proof.chain));
val _ =
Outer_Syntax.command \<^command_keyword>‹from› "forward chaining from given facts"
(facts >> (Toplevel.proof o Proof.from_thmss_cmd));
val _ =
Outer_Syntax.command \<^command_keyword>‹with› "forward chaining from given and current facts"
(facts >> (Toplevel.proof o Proof.with_thmss_cmd));
val _ =
Outer_Syntax.command \<^command_keyword>‹note› "define facts"
(Parse_Spec.name_facts >> (Toplevel.proof o Proof.note_thmss_cmd));
val _ =
Outer_Syntax.command \<^command_keyword>‹supply› "define facts during goal refinement (unstructured)"
(Parse_Spec.name_facts >> (Toplevel.proof o Proof.supply_cmd));
val _ =
Outer_Syntax.command \<^command_keyword>‹using› "augment goal facts"
(facts >> (Toplevel.proof o Proof.using_cmd));
val _ =
Outer_Syntax.command \<^command_keyword>‹unfolding› "unfold definitions in goal and facts"
(facts >> (Toplevel.proof o Proof.unfolding_cmd));
in end›
subsubsection ‹Proof context›
ML ‹
local
val structured_statement =
Parse_Spec.statement -- Parse_Spec.if_statement' -- Parse.for_fixes
>> (fn ((shows, assumes), fixes) => (fixes, assumes, shows));
val _ =
Outer_Syntax.command \<^command_keyword>‹fix› "fix local variables (Skolem constants)"
(Parse.vars >> (Toplevel.proof o Proof.fix_cmd));
val _ =
Outer_Syntax.command \<^command_keyword>‹assume› "assume propositions"
(structured_statement >> (fn (a, b, c) => Toplevel.proof (Proof.assume_cmd a b c)));
val _ =
Outer_Syntax.command \<^command_keyword>‹presume› "assume propositions, to be established later"
(structured_statement >> (fn (a, b, c) => Toplevel.proof (Proof.presume_cmd a b c)));
val _ =
Outer_Syntax.command \<^command_keyword>‹define› "local definition (non-polymorphic)"
((Parse.vars --| Parse.where_) -- Parse_Spec.statement -- Parse.for_fixes
>> (fn ((a, b), c) => Toplevel.proof (Proof.define_cmd a c b)));
val _ =
Outer_Syntax.command \<^command_keyword>‹consider› "state cases rule"
(Parse_Spec.obtains >> (Toplevel.proof' o Obtain.consider_cmd));
val _ =
Outer_Syntax.command \<^command_keyword>‹obtain› "generalized elimination"
(Parse.parbinding -- Scan.optional (Parse.vars --| Parse.where_) [] -- structured_statement
>> (fn ((a, b), (c, d, e)) => Toplevel.proof' (Obtain.obtain_cmd a b c d e)));
val _ =
Outer_Syntax.command \<^command_keyword>‹let› "bind text variables"
(Parse.and_list1 (Parse.and_list1 Parse.term -- (\<^keyword>‹=› |-- Parse.term))
>> (Toplevel.proof o Proof.let_bind_cmd));
val _ =
Outer_Syntax.command \<^command_keyword>‹write› "add concrete syntax for constants / fixed variables"
(Parse.syntax_mode -- Parse.and_list1 (Parse.const -- Parse.mixfix)
>> (fn (mode, args) => Toplevel.proof (Proof.write_cmd mode args)));
val _ =
Outer_Syntax.command \<^command_keyword>‹case› "invoke local context"
(Parse_Spec.opt_thm_name ":" --
(\<^keyword>‹(› |-- Parse.!!! (Parse.name_position -- Scan.repeat (Parse.maybe Parse.binding)
--| \<^keyword>‹)›) ||
Parse.name_position >> rpair []) >> (Toplevel.proof o Proof.case_cmd));
in end›
subsubsection ‹Proof structure›
ML ‹
local
val _ =
Outer_Syntax.command \<^command_keyword>‹{› "begin explicit proof block"
(Scan.succeed (Toplevel.proof Proof.begin_block));
val _ =
Outer_Syntax.command \<^command_keyword>‹}› "end explicit proof block"
(Scan.succeed (Toplevel.proof Proof.end_block));
val _ =
Outer_Syntax.command \<^command_keyword>‹next› "enter next proof block"
(Scan.succeed (Toplevel.proof Proof.next_block));
in end›
subsubsection ‹End proof›
ML ‹
local
val _ =
Outer_Syntax.command \<^command_keyword>‹qed› "conclude proof"
(Scan.option Method.parse >> (fn m =>
(Option.map Method.report m;
Isar_Cmd.qed m)));
val _ =
Outer_Syntax.command \<^command_keyword>‹by› "terminal backward proof"
(Method.parse -- Scan.option Method.parse >> (fn (m1, m2) =>
(Method.report m1;
Option.map Method.report m2;
Isar_Cmd.terminal_proof (m1, m2))));
val _ =
Outer_Syntax.command \<^command_keyword>‹..› "default proof"
(Scan.succeed Isar_Cmd.default_proof);
val _ =
Outer_Syntax.command \<^command_keyword>‹.› "immediate proof"
(Scan.succeed Isar_Cmd.immediate_proof);
val _ =
Outer_Syntax.command \<^command_keyword>‹done› "done proof"
(Scan.succeed Isar_Cmd.done_proof);
val _ =
Outer_Syntax.command \<^command_keyword>‹sorry› "skip proof (quick-and-dirty mode only!)"
(Scan.succeed Isar_Cmd.skip_proof);
val _ =
Outer_Syntax.command \<^command_keyword>‹\<proof>› "dummy proof (quick-and-dirty mode only!)"
(Scan.succeed Isar_Cmd.skip_proof);
val _ =
Outer_Syntax.command \<^command_keyword>‹oops› "forget proof"
(Scan.succeed Toplevel.forget_proof);
in end›
subsubsection ‹Proof steps›
ML ‹
local
val _ =
Outer_Syntax.command \<^command_keyword>‹defer› "shuffle internal proof state"
(Scan.optional Parse.nat 1 >> (Toplevel.proof o Proof.defer));
val _ =
Outer_Syntax.command \<^command_keyword>‹prefer› "shuffle internal proof state"
(Parse.nat >> (Toplevel.proof o Proof.prefer));
val _ =
Outer_Syntax.command \<^command_keyword>‹apply› "initial goal refinement step (unstructured)"
(Method.parse >> (fn m => (Method.report m; Toplevel.proofs (Proof.apply m))));
val _ =
Outer_Syntax.command \<^command_keyword>‹apply_end› "terminal goal refinement step (unstructured)"
(Method.parse >> (fn m => (Method.report m; Toplevel.proofs (Proof.apply_end m))));
val _ =
Outer_Syntax.command \<^command_keyword>‹proof› "backward proof step"
(Scan.option Method.parse >> (fn m =>
(Option.map Method.report m;
Toplevel.proof (fn state =>
let
val state' = state |> Proof.proof m |> Seq.the_result "";
val _ =
Output.information
(Proof_Context.print_cases_proof (Proof.context_of state) (Proof.context_of state'));
in state' end))))
in end›
subsubsection ‹Subgoal focus›
ML ‹
local
val opt_fact_binding =
Scan.optional (Parse.binding -- Parse.opt_attribs || Parse.attribs >> pair Binding.empty)
Binding.empty_atts;
val for_params =
Scan.optional
(\<^keyword>‹for› |--
Parse.!!! ((Scan.option Parse.dots >> is_some) --
(Scan.repeat1 (Parse.maybe_position Parse.name_position))))
(false, []);
val _ =
Outer_Syntax.command \<^command_keyword>‹subgoal›
"focus on first subgoal within backward refinement"
(opt_fact_binding -- (Scan.option (\<^keyword>‹premises› |-- Parse.!!! opt_fact_binding)) --
for_params >> (fn ((a, b), c) =>
Toplevel.proofs (Seq.make_results o Seq.single o #2 o Subgoal.subgoal_cmd a b c)));
in end›
subsubsection ‹Calculation›
ML ‹
local
val calculation_args =
Scan.option (\<^keyword>‹(› |-- Parse.!!! ((Parse.thms1 --| \<^keyword>‹)›)));
val _ =
Outer_Syntax.command \<^command_keyword>‹also› "combine calculation and current facts"
(calculation_args >> (Toplevel.proofs' o Calculation.also_cmd));
val _ =
Outer_Syntax.command \<^command_keyword>‹finally›
"combine calculation and current facts, exhibit result"
(calculation_args >> (Toplevel.proofs' o Calculation.finally_cmd));
val _ =
Outer_Syntax.command \<^command_keyword>‹moreover› "augment calculation by current facts"
(Scan.succeed (Toplevel.proof' Calculation.moreover));
val _ =
Outer_Syntax.command \<^command_keyword>‹ultimately›
"augment calculation by current facts, exhibit result"
(Scan.succeed (Toplevel.proof' Calculation.ultimately));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_trans_rules› "print transitivity rules"
(Scan.succeed (Toplevel.keep (Calculation.print_rules o Toplevel.context_of)));
in end›
subsubsection ‹Proof navigation›
ML ‹
local
fun report_back () =
Output.report [Markup.markup (Markup.bad ()) "Explicit backtracking"];
val _ =
Outer_Syntax.command \<^command_keyword>‹back› "explicit backtracking of proof command"
(Scan.succeed
(Toplevel.actual_proof (fn prf => (report_back (); Proof_Node.back prf)) o
Toplevel.skip_proof report_back));
in end›
subsection ‹Diagnostic commands (for interactive mode only)›
ML ‹
local
val opt_modes =
Scan.optional (\<^keyword>‹(› |-- Parse.!!! (Scan.repeat1 Parse.name --| \<^keyword>‹)›)) [];
val _ =
Outer_Syntax.command \<^command_keyword>‹help›
"retrieve outer syntax commands according to name patterns"
(Scan.repeat Parse.name >>
(fn pats => Toplevel.keep (fn st => Outer_Syntax.help (Toplevel.theory_of st) pats)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_commands› "print outer syntax commands"
(Scan.succeed (Toplevel.keep (Outer_Syntax.print_commands o Toplevel.theory_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_options› "print configuration options"
(Parse.opt_bang >> (fn b => Toplevel.keep (Attrib.print_options b o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_context›
"print context of local theory target"
(Scan.succeed (Toplevel.keep (Pretty.writeln_chunks o Toplevel.pretty_context)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_theory›
"print logical theory contents"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Pretty.writeln o Proof_Display.pretty_theory b o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_definitions›
"print dependencies of definitional theory content"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Pretty.writeln o Proof_Display.pretty_definitions b o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_syntax›
"print inner syntax of context"
(Scan.succeed (Toplevel.keep (Proof_Context.print_syntax o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_defn_rules›
"print definitional rewrite rules of context"
(Scan.succeed (Toplevel.keep (Local_Defs.print_rules o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_abbrevs›
"print constant abbreviations of context"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Proof_Context.print_abbrevs b o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_theorems›
"print theorems of local theory or proof context"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Pretty.writeln o Pretty.chunks o Isar_Cmd.pretty_theorems b)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_locales›
"print locales of this theory"
(Parse.opt_bang >> (fn verbose =>
Toplevel.keep (fn state =>
let val thy = Toplevel.theory_of state
in Pretty.writeln (Locale.pretty_locales thy verbose) end)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_classes›
"print classes of this theory"
(Scan.succeed (Toplevel.keep (Class.print_classes o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_locale›
"print locale of this theory"
(Parse.opt_bang -- Parse.name_position >> (fn (show_facts, raw_name) =>
Toplevel.keep (fn state =>
let
val thy = Toplevel.theory_of state;
val name = Locale.check thy raw_name;
in Pretty.writeln (Locale.pretty_locale thy show_facts name) end)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_interps›
"print interpretations of locale for this theory or proof context"
(Parse.name_position >> (fn raw_name =>
Toplevel.keep (fn state =>
let
val ctxt = Toplevel.context_of state;
val thy = Toplevel.theory_of state;
val name = Locale.check thy raw_name;
in Pretty.writeln (Locale.pretty_registrations ctxt name) end)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_attributes›
"print attributes of this theory"
(Parse.opt_bang >> (fn b => Toplevel.keep (Attrib.print_attributes b o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_simpset›
"print context of Simplifier"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Pretty.writeln o Simplifier.pretty_simpset b o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_rules› "print intro/elim rules"
(Scan.succeed (Toplevel.keep (Context_Rules.print_rules o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_methods› "print methods of this theory"
(Parse.opt_bang >> (fn b => Toplevel.keep (Method.print_methods b o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_antiquotations›
"print document antiquotations"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Document_Antiquotation.print_antiquotations b o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_ML_antiquotations›
"print ML antiquotations"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (ML_Context.print_antiquotations b o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹locale_deps› "visualize locale dependencies"
(Scan.succeed
(Toplevel.keep (Toplevel.theory_of #> (fn thy =>
Locale.pretty_locale_deps thy
|> map (fn {name, parents, body} =>
((name, Graph_Display.content_node (Locale.extern thy name) [body]), parents))
|> Graph_Display.display_graph_old))));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_term_bindings›
"print term bindings of proof context"
(Scan.succeed
(Toplevel.keep
(Pretty.writeln_chunks o Proof_Context.pretty_term_bindings o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_facts› "print facts of proof context"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Proof_Context.print_local_facts b o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_cases› "print cases of proof context"
(Scan.succeed
(Toplevel.keep (Pretty.writeln_chunks o Proof_Context.pretty_cases o Toplevel.context_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_statement›
"print theorems as long statements"
(opt_modes -- Parse.thms1 >> Isar_Cmd.print_stmts);
val _ =
Outer_Syntax.command \<^command_keyword>‹thm› "print theorems"
(opt_modes -- Parse.thms1 >> Isar_Cmd.print_thms);
val _ =
Outer_Syntax.command \<^command_keyword>‹prf› "print proof terms of theorems"
(opt_modes -- Scan.option Parse.thms1 >> Isar_Cmd.print_prfs false);
val _ =
Outer_Syntax.command \<^command_keyword>‹full_prf› "print full proof terms of theorems"
(opt_modes -- Scan.option Parse.thms1 >> Isar_Cmd.print_prfs true);
val _ =
Outer_Syntax.command \<^command_keyword>‹prop› "read and print proposition"
(opt_modes -- Parse.term >> Isar_Cmd.print_prop);
val _ =
Outer_Syntax.command \<^command_keyword>‹term› "read and print term"
(opt_modes -- Parse.term >> Isar_Cmd.print_term);
val _ =
Outer_Syntax.command \<^command_keyword>‹typ› "read and print type"
(opt_modes -- (Parse.typ -- Scan.option (\<^keyword>‹::› |-- Parse.!!! Parse.sort))
>> Isar_Cmd.print_type);
val _ =
Outer_Syntax.command \<^command_keyword>‹print_codesetup› "print code generator setup"
(Scan.succeed (Toplevel.keep (Code.print_codesetup o Toplevel.theory_of)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_context_tracing›
"print result of context tracing from ML heap"
(Scan.repeat Parse.name_position >> (fn raw_names => Toplevel.keep (fn st =>
let
val pred =
if null raw_names then K true
else
let
val ctxt = Toplevel.context_of st;
val insert = Symset.insert o Context.theory_long_name o Thy_Info.check_theory ctxt;
val names = Symset.build (fold insert raw_names);
in Symset.member names o Context.theory_long_name o Context.theory_of end;
in Session.print_context_tracing pred end)));
val _ =
Outer_Syntax.command \<^command_keyword>‹print_state›
"print current proof state (if present)"
(opt_modes >> (fn modes =>
Toplevel.keep (Print_Mode.with_modes modes (Output.writeln o Toplevel.string_of_state))));
val _ =
Outer_Syntax.command \<^command_keyword>‹welcome› "print welcome message"
(Scan.succeed (Toplevel.keep (fn _ => writeln (Session.welcome ()))));
in end›
subsection ‹Dependencies›
ML ‹
local
val theory_bounds =
Parse.theory_name >> single ||
(\<^keyword>‹(› |-- Parse.enum "|" Parse.theory_name --| \<^keyword>‹)›);
val _ =
Outer_Syntax.command \<^command_keyword>‹thy_deps› "visualize theory dependencies"
(Scan.option theory_bounds -- Scan.option theory_bounds >>
(fn args => Toplevel.keep (fn st => Thy_Deps.thy_deps_cmd (Toplevel.context_of st) args)));
val class_bounds =
Parse.sort >> single ||
(\<^keyword>‹(› |-- Parse.enum "|" Parse.sort --| \<^keyword>‹)›);
val _ =
Outer_Syntax.command \<^command_keyword>‹class_deps› "visualize class dependencies"
(Scan.option class_bounds -- Scan.option class_bounds >> (fn args =>
Toplevel.keep (fn st => Class_Deps.class_deps_cmd (Toplevel.context_of st) args)));
val _ =
Outer_Syntax.command \<^command_keyword>‹thm_deps›
"print theorem dependencies (immediate non-transitive)"
(Parse.thms1 >> (fn args =>
Toplevel.keep (fn st =>
let
val thy = Toplevel.theory_of st;
val ctxt = Toplevel.context_of st;
in Pretty.writeln (Thm_Deps.pretty_thm_deps thy (Attrib.eval_thms ctxt args)) end)));
val _ =
Outer_Syntax.command \<^command_keyword>‹thm_oracles›
"print all oracles used in theorems (full graph of transitive dependencies)"
(Parse.thms1 >> (fn args =>
Toplevel.keep (fn st =>
let
val ctxt = Toplevel.context_of st;
val thms = Attrib.eval_thms ctxt args;
in Pretty.writeln (Thm_Deps.pretty_thm_oracles ctxt thms) end)));
val thy_names = Scan.repeat1 (Scan.unless Parse.minus Parse.theory_name);
val _ =
Outer_Syntax.command \<^command_keyword>‹unused_thms› "find unused theorems"
(Scan.option ((thy_names --| Parse.minus) -- Scan.option thy_names) >> (fn opt_range =>
Toplevel.keep (fn st =>
let
val thy = Toplevel.theory_of st;
val ctxt = Toplevel.context_of st;
fun pretty_thm (a, th) = Proof_Context.pretty_fact ctxt (a, [th]);
val check = Theory.check {long = false} ctxt;
in
Thm_Deps.unused_thms_cmd
(case opt_range of
NONE => (Theory.parents_of thy, [thy])
| SOME (xs, NONE) => (map check xs, [thy])
| SOME (xs, SOME ys) => (map check xs, map check ys))
|> map pretty_thm |> Pretty.writeln_chunks
end)));
in end›
subsubsection ‹Find consts and theorems›
ML ‹
local
val _ =
Outer_Syntax.command \<^command_keyword>‹find_consts›
"find constants by name / type patterns"
(Find_Consts.query_parser >> (fn spec =>
Toplevel.keep (fn st =>
Pretty.writeln (Find_Consts.pretty_consts (Toplevel.context_of st) spec))));
val options =
Scan.optional
(Parse.$$$ "(" |--
Parse.!!! (Scan.option Parse.nat --
Scan.optional (Parse.reserved "with_dups" >> K false) true --| Parse.$$$ ")"))
(NONE, true);
val _ =
Outer_Syntax.command \<^command_keyword>‹find_theorems›
"find theorems meeting specified criteria"
(options -- Find_Theorems.query_parser >> (fn ((opt_lim, rem_dups), spec) =>
Toplevel.keep (fn st =>
Pretty.writeln
(Find_Theorems.pretty_theorems (Find_Theorems.proof_state st) opt_lim rem_dups spec))));
in end›
subsection ‹Code generation›
ML ‹
local
val _ =
Outer_Syntax.command \<^command_keyword>‹code_datatype›
"define set of code datatype constructors"
(Scan.repeat1 Parse.term >> (Toplevel.theory o Code.declare_datatype_cmd));
in end›
subsection ‹Extraction of programs from proofs›
ML ‹
local
val parse_vars = Scan.optional (Parse.$$$ "(" |-- Parse.list1 Parse.name --| Parse.$$$ ")") [];
val _ =
Outer_Syntax.command \<^command_keyword>‹realizers›
"specify realizers for primitive axioms / theorems, together with correctness proof"
(Scan.repeat1 (Parse.name -- parse_vars --| Parse.$$$ ":" -- Parse.string -- Parse.string) >>
(fn xs => Toplevel.theory (fn thy => Extraction.add_realizers
(map (fn (((a, vs), s1), s2) => (Global_Theory.get_thm thy a, (vs, s1, s2))) xs) thy)));
val _ =
Outer_Syntax.command \<^command_keyword>‹realizability›
"add equations characterizing realizability"
(Scan.repeat1 Parse.string >> (Toplevel.theory o Extraction.add_realizes_eqns));
val _ =
Outer_Syntax.command \<^command_keyword>‹extract_type›
"add equations characterizing type of extracted program"
(Scan.repeat1 Parse.string >> (Toplevel.theory o Extraction.add_typeof_eqns));
val _ =
Outer_Syntax.command \<^command_keyword>‹extract› "extract terms from proofs"
(Scan.repeat1 (Parse.name -- parse_vars) >> (fn xs => Toplevel.theory (fn thy =>
Extraction.extract (map (apfst (Global_Theory.get_thm thy)) xs) thy)));
in end›
section ‹Auxiliary lemmas›
subsection ‹Meta-level connectives in assumptions›
lemma meta_mp:
assumes "PROP P ⟹ PROP Q" and "PROP P"
shows "PROP Q"
by (rule ‹PROP P ⟹ PROP Q› [OF ‹PROP P›])
lemmas meta_impE = meta_mp [elim_format]
lemma meta_spec:
assumes "⋀x. PROP P x"
shows "PROP P x"
by (rule ‹⋀x. PROP P x›)
lemmas meta_allE = meta_spec [elim_format]
lemma swap_params:
"(⋀x y. PROP P x y) ≡ (⋀y x. PROP P x y)" ..
lemma equal_allI:
‹(⋀x. PROP P x) ≡ (⋀x. PROP Q x)› if ‹⋀x. PROP P x ≡ PROP Q x›
by (simp only: that)
subsection ‹Meta-level conjunction›
lemma all_conjunction:
"(⋀x. PROP A x &&& PROP B x) ≡ ((⋀x. PROP A x) &&& (⋀x. PROP B x))"
proof
assume conj: "⋀x. PROP A x &&& PROP B x"
show "(⋀x. PROP A x) &&& (⋀x. PROP B x)"
proof -
fix x
from conj show "PROP A x" by (rule conjunctionD1)
from conj show "PROP B x" by (rule conjunctionD2)
qed
next
assume conj: "(⋀x. PROP A x) &&& (⋀x. PROP B x)"
fix x
show "PROP A x &&& PROP B x"
proof -
show "PROP A x" by (rule conj [THEN conjunctionD1, rule_format])
show "PROP B x" by (rule conj [THEN conjunctionD2, rule_format])
qed
qed
lemma imp_conjunction:
"(PROP A ⟹ PROP B &&& PROP C) ≡ ((PROP A ⟹ PROP B) &&& (PROP A ⟹ PROP C))"
proof
assume conj: "PROP A ⟹ PROP B &&& PROP C"
show "(PROP A ⟹ PROP B) &&& (PROP A ⟹ PROP C)"
proof -
assume "PROP A"
from conj [OF ‹PROP A›] show "PROP B" by (rule conjunctionD1)
from conj [OF ‹PROP A›] show "PROP C" by (rule conjunctionD2)
qed
next
assume conj: "(PROP A ⟹ PROP B) &&& (PROP A ⟹ PROP C)"
assume "PROP A"
show "PROP B &&& PROP C"
proof -
from ‹PROP A› show "PROP B" by (rule conj [THEN conjunctionD1])
from ‹PROP A› show "PROP C" by (rule conj [THEN conjunctionD2])
qed
qed
lemma conjunction_imp:
"(PROP A &&& PROP B ⟹ PROP C) ≡ (PROP A ⟹ PROP B ⟹ PROP C)"
proof
assume r: "PROP A &&& PROP B ⟹ PROP C"
assume ab: "PROP A" "PROP B"
show "PROP C"
proof (rule r)
from ab show "PROP A &&& PROP B" .
qed
next
assume r: "PROP A ⟹ PROP B ⟹ PROP C"
assume conj: "PROP A &&& PROP B"
show "PROP C"
proof (rule r)
from conj show "PROP A" by (rule conjunctionD1)
from conj show "PROP B" by (rule conjunctionD2)
qed
qed
declare [[ML_write_global = false]]
ML_command ‹\<^assert> (not (can ML_command ‹() handle _ => ()›))›
ML_command ‹\<^assert> (not (can ML_command ‹() handle Interrupt => ()›))›
end