Theory Inductive
section‹Inductive and Coinductive Definitions›
theory Inductive
imports Fixedpt QPair Nat
keywords
"inductive" "coinductive" "inductive_cases" "rep_datatype" "primrec" :: thy_decl and
"domains" "intros" "monos" "con_defs" "type_intros" "type_elims"
"elimination" "induction" "case_eqns" "recursor_eqns" :: quasi_command
begin
lemma def_swap_iff: "a ≡ b ⟹ a = c ⟷ c = b"
by blast
lemma def_trans: "f ≡ g ⟹ g(a) = b ⟹ f(a) = b"
by simp
lemma refl_thin: "⋀P. a = a ⟹ P ⟹ P" .
ML_file ‹ind_syntax.ML›
ML_file ‹Tools/ind_cases.ML›
ML_file ‹Tools/cartprod.ML›
ML_file ‹Tools/inductive_package.ML›
ML_file ‹Tools/induct_tacs.ML›
ML_file ‹Tools/primrec_package.ML›
ML ‹
structure Lfp =
struct
val oper = \<^Const>‹lfp›
val bnd_mono = \<^Const>‹bnd_mono›
val bnd_monoI = @{thm bnd_monoI}
val subs = @{thm def_lfp_subset}
val Tarski = @{thm def_lfp_unfold}
val induct = @{thm def_induct}
end;
structure Standard_Prod =
struct
val sigma = \<^Const>‹Sigma›
val pair = \<^Const>‹Pair›
val split_name = \<^const_name>‹split›
val pair_iff = @{thm Pair_iff}
val split_eq = @{thm split}
val fsplitI = @{thm splitI}
val fsplitD = @{thm splitD}
val fsplitE = @{thm splitE}
end;
structure Standard_CP = CartProd_Fun (Standard_Prod);
structure Standard_Sum =
struct
val sum = \<^Const>‹sum›
val inl = \<^Const>‹Inl›
val inr = \<^Const>‹Inr›
val elim = \<^Const>‹case›
val case_inl = @{thm case_Inl}
val case_inr = @{thm case_Inr}
val inl_iff = @{thm Inl_iff}
val inr_iff = @{thm Inr_iff}
val distinct = @{thm Inl_Inr_iff}
val distinct' = @{thm Inr_Inl_iff}
val free_SEs = Ind_Syntax.mk_free_SEs
[distinct, distinct', inl_iff, inr_iff, Standard_Prod.pair_iff]
end;
structure Ind_Package =
Add_inductive_def_Fun
(structure Fp=Lfp and Pr=Standard_Prod and CP=Standard_CP
and Su=Standard_Sum val coind = false);
structure Gfp =
struct
val oper = \<^Const>‹gfp›
val bnd_mono = \<^Const>‹bnd_mono›
val bnd_monoI = @{thm bnd_monoI}
val subs = @{thm def_gfp_subset}
val Tarski = @{thm def_gfp_unfold}
val induct = @{thm def_Collect_coinduct}
end;
structure Quine_Prod =
struct
val sigma = \<^Const>‹QSigma›
val pair = \<^Const>‹QPair›
val split_name = \<^const_name>‹qsplit›
val pair_iff = @{thm QPair_iff}
val split_eq = @{thm qsplit}
val fsplitI = @{thm qsplitI}
val fsplitD = @{thm qsplitD}
val fsplitE = @{thm qsplitE}
end;
structure Quine_CP = CartProd_Fun (Quine_Prod);
structure Quine_Sum =
struct
val sum = \<^Const>‹qsum›
val inl = \<^Const>‹QInl›
val inr = \<^Const>‹QInr›
val elim = \<^Const>‹qcase›
val case_inl = @{thm qcase_QInl}
val case_inr = @{thm qcase_QInr}
val inl_iff = @{thm QInl_iff}
val inr_iff = @{thm QInr_iff}
val distinct = @{thm QInl_QInr_iff}
val distinct' = @{thm QInr_QInl_iff}
val free_SEs = Ind_Syntax.mk_free_SEs
[distinct, distinct', inl_iff, inr_iff, Quine_Prod.pair_iff]
end;
structure CoInd_Package =
Add_inductive_def_Fun(structure Fp=Gfp and Pr=Quine_Prod and CP=Quine_CP
and Su=Quine_Sum val coind = true);
›
end