Theory ILL_predlog
theory ILL_predlog
imports ILL
begin
typedecl plf
consts
conj :: "[plf,plf] ⇒ plf" (infixr "&" 35)
disj :: "[plf,plf] ⇒ plf" (infixr "|" 35)
impl :: "[plf,plf] ⇒ plf" (infixr ">" 35)
eq :: "[plf,plf] ⇒ plf" (infixr "=" 35)
ff :: "plf" ("ff")
PL :: "plf ⇒ o" ("[* / _ / *]" [] 100)
syntax
"_NG" :: "plf ⇒ plf" ("- _ " [50] 55)
translations
"[* A & B *]" ⇌ "[*A*] && [*B*]"
"[* A | B *]" ⇌ "![*A*] ++ ![*B*]"
"[* - A *]" ⇌ "[*A > ff*]"
"[* ff *]" ⇌ "0"
"[* A = B *]" ⇀ "[* (A > B) & (B > A) *]"
"[* A > B *]" ⇌ "![*A*] -o [*B*]"
lemma k49a: "⊢ [* A > ( - ( - A)) *]"
by best_safe
lemma k49b: "⊢ [*( - ( - ( - A))) = ( - A)*]"
by best_safe
lemma k49c: "⊢ [* (A | - A) > ( - - A = A) *]"
by best_safe
lemma k50a: "⊢ [* - (A = - A) *]"
by best_power
lemma k51a: "⊢ [* - - (A | - A) *]"
by best_safe
lemma k51b: "⊢ [* - - (- - A > A) *]"
by best_power
lemma k56a: "⊢ [* (A | B) > - (- A & - B) *]"
by best_safe
lemma k56b: "⊢ [* (-A | B) > - (A & -B) *]"
by best_safe
lemma k57a: "⊢ [* (A & B) > - (-A | -B) *]"
by best_safe
lemma k57b: "⊢ [* (A & -B) > -(-A | B) *]"
by best_power
lemma k58a: "⊢ [* (A > B) > - (A & -B) *]"
by best_safe
lemma k58b: "⊢ [* (A > -B) = -(A & B) *]"
by best_safe
lemma k58c: "⊢ [* - (A & B) = (- - A > - B) *]"
by best_safe
lemma k58d: "⊢ [* (- - A > - B) = - - (-A | -B) *]"
by best_safe
lemma k58e: "! [* - -B > B *] ⊢ [* (- -A > B) = (A > B) *]"
by best_safe
lemma k58f: "! [* - -B > B *] ⊢ [* (A > B) = - (A & -B) *]"
by best_safe
lemma k58g: "⊢ [* (- -A > B) > - (A & -B) *]"
by best_safe
lemma k59a: "⊢ [* (-A | B) > (A > B) *]"
by best_safe
lemma k59b: "⊢ [* (A > B) > - - (-A | B) *]"
by best_power
lemma k59c: "⊢ [* (-A > B) > - -(A | B) *]"
by best_power
lemma k60a: "⊢ [* (A & B) > - (A > -B) *]"
by best_safe
lemma k60b: "⊢ [* (A & -B) > - (A > B) *]"
by best_safe
lemma k60c: "⊢ [* ( - - A & B) > - (A > -B) *]"
by best_safe
lemma k60d: "⊢ [* (- - A & - B) = - (A > B) *]"
by best_safe
lemma k60e: "⊢ [* - (A > B) = - (-A | B) *]"
by best_safe
lemma k60f: "⊢ [* - (-A | B) = - - (A & -B) *]"
by best_safe
lemma k60g: "⊢ [* - - (A > B) = - (A & -B) *]"
by best_power
lemma k60h: "⊢ [* - (A & -B) = (A > - -B) *]"
by best_safe
lemma k60i: "⊢ [* (A > - -B) = (- -A > - -B) *]"
by best_safe
lemma k61a: "⊢ [* (A | B) > (-A > B) *]"
by best_safe
lemma k61b: "⊢ [* - (A | B) = - (-A > B) *]"
by best_power
lemma k62a: "⊢ [* (-A | -B) > - (A & B) *]"
by best_safe
end