Theory Nat
section ‹Theory of the natural numbers: Peano's axioms, primitive recursion›
theory Nat
imports "../LK"
begin
typedecl nat
instance nat :: "term" ..
axiomatization
Zero :: nat ("0") and
Suc :: "nat ⇒ nat" and
rec :: "[nat, 'a, [nat,'a] ⇒ 'a] ⇒ 'a"
where
induct: "⟦$H ⊢ $E, P(0), $F;
⋀x. $H, P(x) ⊢ $E, P(Suc(x)), $F⟧ ⟹ $H ⊢ $E, P(n), $F" and
Suc_inject: "⊢ Suc(m) = Suc(n) ⟶ m = n" and
Suc_neq_0: "⊢ Suc(m) ≠ 0" and
rec_0: "⊢ rec(0,a,f) = a" and
rec_Suc: "⊢ rec(Suc(m), a, f) = f(m, rec(m,a,f))"
definition add :: "[nat, nat] ⇒ nat" (infixl "+" 60)
where "m + n == rec(m, n, λx y. Suc(y))"
declare Suc_neq_0 [simp]
lemma Suc_inject_rule: "$H, $G, m = n ⊢ $E ⟹ $H, Suc(m) = Suc(n), $G ⊢ $E"
by (rule L_of_imp [OF Suc_inject])
lemma Suc_n_not_n: "⊢ Suc(k) ≠ k"
apply (rule_tac n = k in induct)
apply simp
apply (fast add!: Suc_inject_rule)
done
lemma add_0: "⊢ 0 + n = n"
apply (unfold add_def)
apply (rule rec_0)
done
lemma add_Suc: "⊢ Suc(m) + n = Suc(m + n)"
apply (unfold add_def)
apply (rule rec_Suc)
done
declare add_0 [simp] add_Suc [simp]
lemma add_assoc: "⊢ (k + m) + n = k + (m + n)"
apply (rule_tac n = "k" in induct)
apply simp_all
done
lemma add_0_right: "⊢ m + 0 = m"
apply (rule_tac n = "m" in induct)
apply simp_all
done
lemma add_Suc_right: "⊢ m + Suc(n) = Suc(m + n)"
apply (rule_tac n = "m" in induct)
apply simp_all
done
lemma "(⋀n. ⊢ f(Suc(n)) = Suc(f(n))) ⟹ ⊢ f(i + j) = i + f(j)"
apply (rule_tac n = "i" in induct)
apply simp_all
done
end