Theory Quantifiers
theory Quantifiers
imports "../LK"
begin
lemma "⊢ (∀x. P) ⟷ P"
by fast
lemma "⊢ (∀x y. P(x,y)) ⟷ (∀y x. P(x,y))"
by fast
lemma "∀u. P(u), ∀v. Q(v) ⊢ ∀u v. P(u) ∧ Q(v)"
by fast
text "Permutation of existential quantifier."
lemma "⊢ (∃x y. P(x,y)) ⟷ (∃y x. P(x,y))"
by fast
lemma "⊢ (∀x. P(x) ∧ Q(x)) ⟷ (∀x. P(x)) ∧ (∀x. Q(x))"
by fast
lemma "⊢ (∀x. P(x)) ∨ (∀x. Q(x)) ⟶ (∀x. P(x) ∨ Q(x))"
by fast
text "Pushing ∀into an implication."
lemma "⊢ (∀x. P ⟶ Q(x)) ⟷ (P ⟶ (∀x. Q(x)))"
by fast
lemma "⊢ (∀x. P(x) ⟶ Q) ⟷ ((∃x. P(x)) ⟶ Q)"
by fast
lemma "⊢ (∃x. P) ⟷ P"
by fast
text "Distribution of ∃over disjunction."
lemma "⊢ (∃x. P(x) ∨ Q(x)) ⟷ (∃x. P(x)) ∨ (∃x. Q(x))"
by fast
lemma "⊢ (∃x. P(x) ∧ Q(x)) ⟶ (∃x. P(x)) ∧ (∃x. Q(x))"
by fast
text "Harder examples: classical theorems."
lemma "⊢ (∃x. P ⟶ Q(x)) ⟷ (P ⟶ (∃x. Q(x)))"
by fast
lemma "⊢ (∃x. P(x) ⟶ Q) ⟷ (∀x. P(x)) ⟶ Q"
by fast
lemma "⊢ (∀x. P(x)) ∨ Q ⟷ (∀x. P(x) ∨ Q)"
by fast
text "Basic test of quantifier reasoning"
lemma "⊢ (∃y. ∀x. Q(x,y)) ⟶ (∀x. ∃y. Q(x,y))"
by fast
lemma "⊢ (∀x. Q(x)) ⟶ (∃x. Q(x))"
by fast
text "The following are invalid!"
lemma "⊢ (∀x. ∃y. Q(x,y)) ⟶ (∃y. ∀x. Q(x,y))"
apply fast?
apply (rule _)
oops
lemma "⊢ (∃x. Q(x)) ⟶ (∀x. Q(x))"
apply fast?
apply (rule _)
oops
schematic_goal "⊢ P(?a) ⟶ (∀x. P(x))"
apply fast?
apply (rule _)
oops
schematic_goal "⊢ (P(?a) ⟶ (∀x. Q(x))) ⟶ (∀x. P(x) ⟶ Q(x))"
apply fast?
apply (rule _)
oops
text "Back to things that are provable..."
lemma "⊢ (∀x. P(x) ⟶ Q(x)) ∧ (∃x. P(x)) ⟶ (∃x. Q(x))"
by fast
lemma "⊢ (P ⟶ (∃x. Q(x))) ∧ P ⟶ (∃x. Q(x))"
by fast
text "Solving for a Var"
schematic_goal "⊢ (∀x. P(x) ⟶ Q(f(x))) ∧ (∀x. Q(x) ⟶ R(g(x))) ∧ P(d) ⟶ R(?a)"
by fast
text "Principia Mathematica *11.53"
lemma "⊢ (∀x y. P(x) ⟶ Q(y)) ⟷ ((∃x. P(x)) ⟶ (∀y. Q(y)))"
by fast
text "Principia Mathematica *11.55"
lemma "⊢ (∃x y. P(x) ∧ Q(x,y)) ⟷ (∃x. P(x) ∧ (∃y. Q(x,y)))"
by fast
text "Principia Mathematica *11.61"
lemma "⊢ (∃y. ∀x. P(x) ⟶ Q(x,y)) ⟶ (∀x. P(x) ⟶ (∃y. Q(x,y)))"
by fast
end