Theory IntDiv
section‹The Division Operators Div and Mod›
theory IntDiv
imports Bin OrderArith
begin
definition
quorem :: "[i,i] ⇒ o" where
"quorem ≡ λ⟨a,b⟩ ⟨q,r⟩.
a = b$*q $+ r ∧
(#0$<b ∧ #0$≤r ∧ r$<b | ¬(#0$<b) ∧ b$<r ∧ r $≤ #0)"
definition
adjust :: "[i,i] ⇒ i" where
"adjust(b) ≡ λ⟨q,r⟩. if #0 $≤ r$-b then <#2$*q $+ #1,r$-b>
else <#2$*q,r>"
definition
posDivAlg :: "i ⇒ i" where
"posDivAlg(ab) ≡
wfrec(measure(int*int, λ⟨a,b⟩. nat_of (a $- b $+ #1)),
ab,
λ⟨a,b⟩ f. if (a$<b | b$≤#0) then <#0,a>
else adjust(b, f ` <a,#2$*b>))"
definition
negDivAlg :: "i ⇒ i" where
"negDivAlg(ab) ≡
wfrec(measure(int*int, λ⟨a,b⟩. nat_of ($- a $- b)),
ab,
λ⟨a,b⟩ f. if (#0 $≤ a$+b | b$≤#0) then <#-1,a$+b>
else adjust(b, f ` <a,#2$*b>))"
definition
negateSnd :: "i ⇒ i" where
"negateSnd ≡ λ⟨q,r⟩. <q, $-r>"
definition
divAlg :: "i ⇒ i" where
"divAlg ≡
λ⟨a,b⟩. if #0 $≤ a then
if #0 $≤ b then posDivAlg (⟨a,b⟩)
else if a=#0 then <#0,#0>
else negateSnd (negDivAlg (<$-a,$-b>))
else
if #0$<b then negDivAlg (⟨a,b⟩)
else negateSnd (posDivAlg (<$-a,$-b>))"
definition
zdiv :: "[i,i]⇒i" (infixl ‹zdiv› 70) where
"a zdiv b ≡ fst (divAlg (<intify(a), intify(b)>))"
definition
zmod :: "[i,i]⇒i" (infixl ‹zmod› 70) where
"a zmod b ≡ snd (divAlg (<intify(a), intify(b)>))"
lemma zspos_add_zspos_imp_zspos: "⟦#0 $< x; #0 $< y⟧ ⟹ #0 $< x $+ y"
apply (rule_tac y = "y" in zless_trans)
apply (rule_tac [2] zdiff_zless_iff [THEN iffD1])
apply auto
done
lemma zpos_add_zpos_imp_zpos: "⟦#0 $≤ x; #0 $≤ y⟧ ⟹ #0 $≤ x $+ y"
apply (rule_tac y = "y" in zle_trans)
apply (rule_tac [2] zdiff_zle_iff [THEN iffD1])
apply auto
done
lemma zneg_add_zneg_imp_zneg: "⟦x $< #0; y $< #0⟧ ⟹ x $+ y $< #0"
apply (rule_tac y = "y" in zless_trans)
apply (rule zless_zdiff_iff [THEN iffD1])
apply auto
done
lemma zneg_or_0_add_zneg_or_0_imp_zneg_or_0:
"⟦x $≤ #0; y $≤ #0⟧ ⟹ x $+ y $≤ #0"
apply (rule_tac y = "y" in zle_trans)
apply (rule zle_zdiff_iff [THEN iffD1])
apply auto
done
lemma zero_lt_zmagnitude: "⟦#0 $< k; k ∈ int⟧ ⟹ 0 < zmagnitude(k)"
apply (drule zero_zless_imp_znegative_zminus)
apply (drule_tac [2] zneg_int_of)
apply (auto simp add: zminus_equation [of k])
apply (subgoal_tac "0 < zmagnitude ($# succ (n))")
apply simp
apply (simp only: zmagnitude_int_of)
apply simp
done
lemma zless_add_succ_iff:
"(w $< z $+ $# succ(m)) ⟷ (w $< z $+ $#m | intify(w) = z $+ $#m)"
apply (auto simp add: zless_iff_succ_zadd zadd_assoc int_of_add [symmetric])
apply (rule_tac [3] x = "0" in bexI)
apply (cut_tac m = "m" in int_succ_int_1)
apply (cut_tac m = "n" in int_succ_int_1)
apply simp
apply (erule natE)
apply auto
apply (rule_tac x = "succ (n) " in bexI)
apply auto
done
lemma zadd_succ_lemma:
"z ∈ int ⟹ (w $+ $# succ(m) $≤ z) ⟷ (w $+ $#m $< z)"
apply (simp only: not_zless_iff_zle [THEN iff_sym] zless_add_succ_iff)
apply (auto intro: zle_anti_sym elim: zless_asym
simp add: zless_imp_zle not_zless_iff_zle)
done
lemma zadd_succ_zle_iff: "(w $+ $# succ(m) $≤ z) ⟷ (w $+ $#m $< z)"
apply (cut_tac z = "intify (z)" in zadd_succ_lemma)
apply auto
done
lemma zless_add1_iff_zle: "(w $< z $+ #1) ⟷ (w$≤z)"
apply (subgoal_tac "#1 = $# 1")
apply (simp only: zless_add_succ_iff zle_def)
apply auto
done
lemma add1_zle_iff: "(w $+ #1 $≤ z) ⟷ (w $< z)"
apply (subgoal_tac "#1 = $# 1")
apply (simp only: zadd_succ_zle_iff)
apply auto
done
lemma add1_left_zle_iff: "(#1 $+ w $≤ z) ⟷ (w $< z)"
apply (subst zadd_commute)
apply (rule add1_zle_iff)
done
lemma zmult_mono_lemma: "k ∈ nat ⟹ i $≤ j ⟹ i $* $#k $≤ j $* $#k"
apply (induct_tac "k")
prefer 2 apply (subst int_succ_int_1)
apply (simp_all (no_asm_simp) add: zadd_zmult_distrib2 zadd_zle_mono)
done
lemma zmult_zle_mono1: "⟦i $≤ j; #0 $≤ k⟧ ⟹ i$*k $≤ j$*k"
apply (subgoal_tac "i $* intify (k) $≤ j $* intify (k) ")
apply (simp (no_asm_use))
apply (rule_tac b = "intify (k)" in not_zneg_mag [THEN subst])
apply (rule_tac [3] zmult_mono_lemma)
apply auto
apply (simp add: znegative_iff_zless_0 not_zless_iff_zle [THEN iff_sym])
done
lemma zmult_zle_mono1_neg: "⟦i $≤ j; k $≤ #0⟧ ⟹ j$*k $≤ i$*k"
apply (rule zminus_zle_zminus [THEN iffD1])
apply (simp del: zmult_zminus_right
add: zmult_zminus_right [symmetric] zmult_zle_mono1 zle_zminus)
done
lemma zmult_zle_mono2: "⟦i $≤ j; #0 $≤ k⟧ ⟹ k$*i $≤ k$*j"
apply (drule zmult_zle_mono1)
apply (simp_all add: zmult_commute)
done
lemma zmult_zle_mono2_neg: "⟦i $≤ j; k $≤ #0⟧ ⟹ k$*j $≤ k$*i"
apply (drule zmult_zle_mono1_neg)
apply (simp_all add: zmult_commute)
done
lemma zmult_zle_mono:
"⟦i $≤ j; k $≤ l; #0 $≤ j; #0 $≤ k⟧ ⟹ i$*k $≤ j$*l"
apply (erule zmult_zle_mono1 [THEN zle_trans])
apply assumption
apply (erule zmult_zle_mono2)
apply assumption
done
lemma zmult_zless_mono2_lemma [rule_format]:
"⟦i$<j; k ∈ nat⟧ ⟹ 0<k ⟶ $#k $* i $< $#k $* j"
apply (induct_tac "k")
prefer 2
apply (subst int_succ_int_1)
apply (erule natE)
apply (simp_all add: zadd_zmult_distrib zadd_zless_mono zle_def)
apply (frule nat_0_le)
apply (subgoal_tac "i $+ (i $+ $# xa $* i) $< j $+ (j $+ $# xa $* j) ")
apply (simp (no_asm_use))
apply (rule zadd_zless_mono)
apply (simp_all (no_asm_simp) add: zle_def)
done
lemma zmult_zless_mono2: "⟦i$<j; #0 $< k⟧ ⟹ k$*i $< k$*j"
apply (subgoal_tac "intify (k) $* i $< intify (k) $* j")
apply (simp (no_asm_use))
apply (rule_tac b = "intify (k)" in not_zneg_mag [THEN subst])
apply (rule_tac [3] zmult_zless_mono2_lemma)
apply auto
apply (simp add: znegative_iff_zless_0)
apply (drule zless_trans, assumption)
apply (auto simp add: zero_lt_zmagnitude)
done
lemma zmult_zless_mono1: "⟦i$<j; #0 $< k⟧ ⟹ i$*k $< j$*k"
apply (drule zmult_zless_mono2)
apply (simp_all add: zmult_commute)
done
lemma zmult_zless_mono:
"⟦i $< j; k $< l; #0 $< j; #0 $< k⟧ ⟹ i$*k $< j$*l"
apply (erule zmult_zless_mono1 [THEN zless_trans])
apply assumption
apply (erule zmult_zless_mono2)
apply assumption
done
lemma zmult_zless_mono1_neg: "⟦i $< j; k $< #0⟧ ⟹ j$*k $< i$*k"
apply (rule zminus_zless_zminus [THEN iffD1])
apply (simp del: zmult_zminus_right
add: zmult_zminus_right [symmetric] zmult_zless_mono1 zless_zminus)
done
lemma zmult_zless_mono2_neg: "⟦i $< j; k $< #0⟧ ⟹ k$*j $< k$*i"
apply (rule zminus_zless_zminus [THEN iffD1])
apply (simp del: zmult_zminus
add: zmult_zminus [symmetric] zmult_zless_mono2 zless_zminus)
done
lemma zmult_eq_lemma:
"⟦m ∈ int; n ∈ int⟧ ⟹ (m = #0 | n = #0) ⟷ (m$*n = #0)"
apply (case_tac "m $< #0")
apply (auto simp add: not_zless_iff_zle zle_def neq_iff_zless)
apply (force dest: zmult_zless_mono1_neg zmult_zless_mono1)+
done
lemma zmult_eq_0_iff [iff]: "(m$*n = #0) ⟷ (intify(m) = #0 | intify(n) = #0)"
apply (simp add: zmult_eq_lemma)
done
lemma zmult_zless_lemma:
"⟦k ∈ int; m ∈ int; n ∈ int⟧
⟹ (m$*k $< n$*k) ⟷ ((#0 $< k ∧ m$<n) | (k $< #0 ∧ n$<m))"
apply (case_tac "k = #0")
apply (auto simp add: neq_iff_zless zmult_zless_mono1 zmult_zless_mono1_neg)
apply (auto simp add: not_zless_iff_zle
not_zle_iff_zless [THEN iff_sym, of "m$*k"]
not_zle_iff_zless [THEN iff_sym, of m])
apply (auto elim: notE
simp add: zless_imp_zle zmult_zle_mono1 zmult_zle_mono1_neg)
done
lemma zmult_zless_cancel2:
"(m$*k $< n$*k) ⟷ ((#0 $< k ∧ m$<n) | (k $< #0 ∧ n$<m))"
apply (cut_tac k = "intify (k)" and m = "intify (m)" and n = "intify (n)"
in zmult_zless_lemma)
apply auto
done
lemma zmult_zless_cancel1:
"(k$*m $< k$*n) ⟷ ((#0 $< k ∧ m$<n) | (k $< #0 ∧ n$<m))"
by (simp add: zmult_commute [of k] zmult_zless_cancel2)
lemma zmult_zle_cancel2:
"(m$*k $≤ n$*k) ⟷ ((#0 $< k ⟶ m$≤n) ∧ (k $< #0 ⟶ n$≤m))"
by (auto simp add: not_zless_iff_zle [THEN iff_sym] zmult_zless_cancel2)
lemma zmult_zle_cancel1:
"(k$*m $≤ k$*n) ⟷ ((#0 $< k ⟶ m$≤n) ∧ (k $< #0 ⟶ n$≤m))"
by (auto simp add: not_zless_iff_zle [THEN iff_sym] zmult_zless_cancel1)
lemma int_eq_iff_zle: "⟦m ∈ int; n ∈ int⟧ ⟹ m=n ⟷ (m $≤ n ∧ n $≤ m)"
apply (blast intro: zle_refl zle_anti_sym)
done
lemma zmult_cancel2_lemma:
"⟦k ∈ int; m ∈ int; n ∈ int⟧ ⟹ (m$*k = n$*k) ⟷ (k=#0 | m=n)"
apply (simp add: int_eq_iff_zle [of "m$*k"] int_eq_iff_zle [of m])
apply (auto simp add: zmult_zle_cancel2 neq_iff_zless)
done
lemma zmult_cancel2 [simp]:
"(m$*k = n$*k) ⟷ (intify(k) = #0 | intify(m) = intify(n))"
apply (rule iff_trans)
apply (rule_tac [2] zmult_cancel2_lemma)
apply auto
done
lemma zmult_cancel1 [simp]:
"(k$*m = k$*n) ⟷ (intify(k) = #0 | intify(m) = intify(n))"
by (simp add: zmult_commute [of k] zmult_cancel2)
subsection‹Uniqueness and monotonicity of quotients and remainders›
lemma unique_quotient_lemma:
"⟦b$*q' $+ r' $≤ b$*q $+ r; #0 $≤ r'; #0 $< b; r $< b⟧
⟹ q' $≤ q"
apply (subgoal_tac "r' $+ b $* (q'$-q) $≤ r")
prefer 2 apply (simp add: zdiff_zmult_distrib2 zadd_ac zcompare_rls)
apply (subgoal_tac "#0 $< b $* (#1 $+ q $- q') ")
prefer 2
apply (erule zle_zless_trans)
apply (simp add: zdiff_zmult_distrib2 zadd_zmult_distrib2 zadd_ac zcompare_rls)
apply (erule zle_zless_trans)
apply simp
apply (subgoal_tac "b $* q' $< b $* (#1 $+ q)")
prefer 2
apply (simp add: zdiff_zmult_distrib2 zadd_zmult_distrib2 zadd_ac zcompare_rls)
apply (auto elim: zless_asym
simp add: zmult_zless_cancel1 zless_add1_iff_zle zadd_ac zcompare_rls)
done
lemma unique_quotient_lemma_neg:
"⟦b$*q' $+ r' $≤ b$*q $+ r; r $≤ #0; b $< #0; b $< r'⟧
⟹ q $≤ q'"
apply (rule_tac b = "$-b" and r = "$-r'" and r' = "$-r"
in unique_quotient_lemma)
apply (auto simp del: zminus_zadd_distrib
simp add: zminus_zadd_distrib [symmetric] zle_zminus zless_zminus)
done
lemma unique_quotient:
"⟦quorem (⟨a,b⟩, ⟨q,r⟩); quorem (⟨a,b⟩, <q',r'>); b ∈ int; b ≠ #0;
q ∈ int; q' ∈ int⟧ ⟹ q = q'"
apply (simp add: split_ifs quorem_def neq_iff_zless)
apply safe
apply simp_all
apply (blast intro: zle_anti_sym
dest: zle_eq_refl [THEN unique_quotient_lemma]
zle_eq_refl [THEN unique_quotient_lemma_neg] sym)+
done
lemma unique_remainder:
"⟦quorem (⟨a,b⟩, ⟨q,r⟩); quorem (⟨a,b⟩, <q',r'>); b ∈ int; b ≠ #0;
q ∈ int; q' ∈ int;
r ∈ int; r' ∈ int⟧ ⟹ r = r'"
apply (subgoal_tac "q = q'")
prefer 2 apply (blast intro: unique_quotient)
apply (simp add: quorem_def)
done
subsection‹Correctness of posDivAlg,
the Division Algorithm for ‹a≥0› and ‹b>0››
lemma adjust_eq [simp]:
"adjust(b, ⟨q,r⟩) = (let diff = r$-b in
if #0 $≤ diff then <#2$*q $+ #1,diff>
else <#2$*q,r>)"
by (simp add: Let_def adjust_def)
lemma posDivAlg_termination:
"⟦#0 $< b; ¬ a $< b⟧
⟹ nat_of(a $- #2 $* b $+ #1) < nat_of(a $- b $+ #1)"
apply (simp (no_asm) add: zless_nat_conj)
apply (simp add: not_zless_iff_zle zless_add1_iff_zle zcompare_rls)
done
lemmas posDivAlg_unfold = def_wfrec [OF posDivAlg_def wf_measure]
lemma posDivAlg_eqn:
"⟦#0 $< b; a ∈ int; b ∈ int⟧ ⟹
posDivAlg(⟨a,b⟩) =
(if a$<b then <#0,a> else adjust(b, posDivAlg (<a, #2$*b>)))"
apply (rule posDivAlg_unfold [THEN trans])
apply (simp add: vimage_iff not_zless_iff_zle [THEN iff_sym])
apply (blast intro: posDivAlg_termination)
done
lemma posDivAlg_induct_lemma [rule_format]:
assumes prem:
"⋀a b. ⟦a ∈ int; b ∈ int;
¬ (a $< b | b $≤ #0) ⟶ P(<a, #2 $* b>)⟧ ⟹ P(⟨a,b⟩)"
shows "⟨u,v⟩ ∈ int*int ⟹ P(⟨u,v⟩)"
using wf_measure [where A = "int*int" and f = "λ⟨a,b⟩.nat_of (a $- b $+ #1)"]
proof (induct "⟨u,v⟩" arbitrary: u v rule: wf_induct)
case (step x)
hence uv: "u ∈ int" "v ∈ int" by auto
thus ?case
apply (rule prem)
apply (rule impI)
apply (rule step)
apply (auto simp add: step uv not_zle_iff_zless posDivAlg_termination)
done
qed
lemma posDivAlg_induct [consumes 2]:
assumes u_int: "u ∈ int"
and v_int: "v ∈ int"
and ih: "⋀a b. ⟦a ∈ int; b ∈ int;
¬ (a $< b | b $≤ #0) ⟶ P(a, #2 $* b)⟧ ⟹ P(a,b)"
shows "P(u,v)"
apply (subgoal_tac "(λ⟨x,y⟩. P (x,y)) (⟨u,v⟩)")
apply simp
apply (rule posDivAlg_induct_lemma)
apply (simp (no_asm_use))
apply (rule ih)
apply (auto simp add: u_int v_int)
done
lemma intify_eq_0_iff_zle: "intify(m) = #0 ⟷ (m $≤ #0 ∧ #0 $≤ m)"
by (simp add: int_eq_iff_zle)
subsection‹Some convenient biconditionals for products of signs›
lemma zmult_pos: "⟦#0 $< i; #0 $< j⟧ ⟹ #0 $< i $* j"
by (drule zmult_zless_mono1, auto)
lemma zmult_neg: "⟦i $< #0; j $< #0⟧ ⟹ #0 $< i $* j"
by (drule zmult_zless_mono1_neg, auto)
lemma zmult_pos_neg: "⟦#0 $< i; j $< #0⟧ ⟹ i $* j $< #0"
by (drule zmult_zless_mono1_neg, auto)
lemma int_0_less_lemma:
"⟦x ∈ int; y ∈ int⟧
⟹ (#0 $< x $* y) ⟷ (#0 $< x ∧ #0 $< y | x $< #0 ∧ y $< #0)"
apply (auto simp add: zle_def not_zless_iff_zle zmult_pos zmult_neg)
apply (rule ccontr)
apply (rule_tac [2] ccontr)
apply (auto simp add: zle_def not_zless_iff_zle)
apply (erule_tac P = "#0$< x$* y" in rev_mp)
apply (erule_tac [2] P = "#0$< x$* y" in rev_mp)
apply (drule zmult_pos_neg, assumption)
prefer 2
apply (drule zmult_pos_neg, assumption)
apply (auto dest: zless_not_sym simp add: zmult_commute)
done
lemma int_0_less_mult_iff:
"(#0 $< x $* y) ⟷ (#0 $< x ∧ #0 $< y | x $< #0 ∧ y $< #0)"
apply (cut_tac x = "intify (x)" and y = "intify (y)" in int_0_less_lemma)
apply auto
done
lemma int_0_le_lemma:
"⟦x ∈ int; y ∈ int⟧
⟹ (#0 $≤ x $* y) ⟷ (#0 $≤ x ∧ #0 $≤ y | x $≤ #0 ∧ y $≤ #0)"
by (auto simp add: zle_def not_zless_iff_zle int_0_less_mult_iff)
lemma int_0_le_mult_iff:
"(#0 $≤ x $* y) ⟷ ((#0 $≤ x ∧ #0 $≤ y) | (x $≤ #0 ∧ y $≤ #0))"
apply (cut_tac x = "intify (x)" and y = "intify (y)" in int_0_le_lemma)
apply auto
done
lemma zmult_less_0_iff:
"(x $* y $< #0) ⟷ (#0 $< x ∧ y $< #0 | x $< #0 ∧ #0 $< y)"
apply (auto simp add: int_0_le_mult_iff not_zle_iff_zless [THEN iff_sym])
apply (auto dest: zless_not_sym simp add: not_zle_iff_zless)
done
lemma zmult_le_0_iff:
"(x $* y $≤ #0) ⟷ (#0 $≤ x ∧ y $≤ #0 | x $≤ #0 ∧ #0 $≤ y)"
by (auto dest: zless_not_sym
simp add: int_0_less_mult_iff not_zless_iff_zle [THEN iff_sym])
lemma posDivAlg_type [rule_format]:
"⟦a ∈ int; b ∈ int⟧ ⟹ posDivAlg(⟨a,b⟩) ∈ int * int"
apply (rule_tac u = "a" and v = "b" in posDivAlg_induct)
apply assumption+
apply (case_tac "#0 $< ba")
apply (simp add: posDivAlg_eqn adjust_def integ_of_type
split: split_if_asm)
apply clarify
apply (simp add: int_0_less_mult_iff not_zle_iff_zless)
apply (simp add: not_zless_iff_zle)
apply (subst posDivAlg_unfold)
apply simp
done
lemma posDivAlg_correct [rule_format]:
"⟦a ∈ int; b ∈ int⟧
⟹ #0 $≤ a ⟶ #0 $< b ⟶ quorem (⟨a,b⟩, posDivAlg(⟨a,b⟩))"
apply (rule_tac u = "a" and v = "b" in posDivAlg_induct)
apply auto
apply (simp_all add: quorem_def)
txt‹base case: a<b›
apply (simp add: posDivAlg_eqn)
apply (simp add: not_zless_iff_zle [THEN iff_sym])
apply (simp add: int_0_less_mult_iff)
txt‹main argument›
apply (subst posDivAlg_eqn)
apply (simp_all (no_asm_simp))
apply (erule splitE)
apply (rule posDivAlg_type)
apply (simp_all add: int_0_less_mult_iff)
apply (auto simp add: zadd_zmult_distrib2 Let_def)
txt‹now just linear arithmetic›
apply (simp add: not_zle_iff_zless zdiff_zless_iff)
done
subsection‹Correctness of negDivAlg, the division algorithm for a<0 and b>0›
lemma negDivAlg_termination:
"⟦#0 $< b; a $+ b $< #0⟧
⟹ nat_of($- a $- #2 $* b) < nat_of($- a $- b)"
apply (simp (no_asm) add: zless_nat_conj)
apply (simp add: zcompare_rls not_zle_iff_zless zless_zdiff_iff [THEN iff_sym]
zless_zminus)
done
lemmas negDivAlg_unfold = def_wfrec [OF negDivAlg_def wf_measure]
lemma negDivAlg_eqn:
"⟦#0 $< b; a ∈ int; b ∈ int⟧ ⟹
negDivAlg(⟨a,b⟩) =
(if #0 $≤ a$+b then <#-1,a$+b>
else adjust(b, negDivAlg (<a, #2$*b>)))"
apply (rule negDivAlg_unfold [THEN trans])
apply (simp (no_asm_simp) add: vimage_iff not_zless_iff_zle [THEN iff_sym])
apply (blast intro: negDivAlg_termination)
done
lemma negDivAlg_induct_lemma [rule_format]:
assumes prem:
"⋀a b. ⟦a ∈ int; b ∈ int;
¬ (#0 $≤ a $+ b | b $≤ #0) ⟶ P(<a, #2 $* b>)⟧
⟹ P(⟨a,b⟩)"
shows "⟨u,v⟩ ∈ int*int ⟹ P(⟨u,v⟩)"
using wf_measure [where A = "int*int" and f = "λ⟨a,b⟩.nat_of ($- a $- b)"]
proof (induct "⟨u,v⟩" arbitrary: u v rule: wf_induct)
case (step x)
hence uv: "u ∈ int" "v ∈ int" by auto
thus ?case
apply (rule prem)
apply (rule impI)
apply (rule step)
apply (auto simp add: step uv not_zle_iff_zless negDivAlg_termination)
done
qed
lemma negDivAlg_induct [consumes 2]:
assumes u_int: "u ∈ int"
and v_int: "v ∈ int"
and ih: "⋀a b. ⟦a ∈ int; b ∈ int;
¬ (#0 $≤ a $+ b | b $≤ #0) ⟶ P(a, #2 $* b)⟧
⟹ P(a,b)"
shows "P(u,v)"
apply (subgoal_tac " (λ⟨x,y⟩. P (x,y)) (⟨u,v⟩)")
apply simp
apply (rule negDivAlg_induct_lemma)
apply (simp (no_asm_use))
apply (rule ih)
apply (auto simp add: u_int v_int)
done
lemma negDivAlg_type:
"⟦a ∈ int; b ∈ int⟧ ⟹ negDivAlg(⟨a,b⟩) ∈ int * int"
apply (rule_tac u = "a" and v = "b" in negDivAlg_induct)
apply assumption+
apply (case_tac "#0 $< ba")
apply (simp add: negDivAlg_eqn adjust_def integ_of_type
split: split_if_asm)
apply clarify
apply (simp add: int_0_less_mult_iff not_zle_iff_zless)
apply (simp add: not_zless_iff_zle)
apply (subst negDivAlg_unfold)
apply simp
done
lemma negDivAlg_correct [rule_format]:
"⟦a ∈ int; b ∈ int⟧
⟹ a $< #0 ⟶ #0 $< b ⟶ quorem (⟨a,b⟩, negDivAlg(⟨a,b⟩))"
apply (rule_tac u = "a" and v = "b" in negDivAlg_induct)
apply auto
apply (simp_all add: quorem_def)
txt‹base case: \<^term>‹0$≤a$+b››
apply (simp add: negDivAlg_eqn)
apply (simp add: not_zless_iff_zle [THEN iff_sym])
apply (simp add: int_0_less_mult_iff)
txt‹main argument›
apply (subst negDivAlg_eqn)
apply (simp_all (no_asm_simp))
apply (erule splitE)
apply (rule negDivAlg_type)
apply (simp_all add: int_0_less_mult_iff)
apply (auto simp add: zadd_zmult_distrib2 Let_def)
txt‹now just linear arithmetic›
apply (simp add: not_zle_iff_zless zdiff_zless_iff)
done
subsection‹Existence shown by proving the division algorithm to be correct›
lemma quorem_0: "⟦b ≠ #0; b ∈ int⟧ ⟹ quorem (<#0,b>, <#0,#0>)"
by (force simp add: quorem_def neq_iff_zless)
lemma posDivAlg_zero_divisor: "posDivAlg(<a,#0>) = <#0,a>"
apply (subst posDivAlg_unfold)
apply simp
done
lemma posDivAlg_0 [simp]: "posDivAlg (<#0,b>) = <#0,#0>"
apply (subst posDivAlg_unfold)
apply (simp add: not_zle_iff_zless)
done
lemma linear_arith_lemma: "¬ (#0 $≤ #-1 $+ b) ⟹ (b $≤ #0)"
apply (simp add: not_zle_iff_zless)
apply (drule zminus_zless_zminus [THEN iffD2])
apply (simp add: zadd_commute zless_add1_iff_zle zle_zminus)
done
lemma negDivAlg_minus1 [simp]: "negDivAlg (<#-1,b>) = <#-1, b$-#1>"
apply (subst negDivAlg_unfold)
apply (simp add: linear_arith_lemma integ_of_type vimage_iff)
done
lemma negateSnd_eq [simp]: "negateSnd (⟨q,r⟩) = <q, $-r>"
unfolding negateSnd_def
apply auto
done
lemma negateSnd_type: "qr ∈ int * int ⟹ negateSnd (qr) ∈ int * int"
unfolding negateSnd_def
apply auto
done
lemma quorem_neg:
"⟦quorem (<$-a,$-b>, qr); a ∈ int; b ∈ int; qr ∈ int * int⟧
⟹ quorem (⟨a,b⟩, negateSnd(qr))"
apply clarify
apply (auto elim: zless_asym simp add: quorem_def zless_zminus)
txt‹linear arithmetic from here on›
apply (simp_all add: zminus_equation [of a] zminus_zless)
apply (cut_tac [2] z = "b" and w = "#0" in zless_linear)
apply (cut_tac [1] z = "b" and w = "#0" in zless_linear)
apply auto
apply (blast dest: zle_zless_trans)+
done
lemma divAlg_correct:
"⟦b ≠ #0; a ∈ int; b ∈ int⟧ ⟹ quorem (⟨a,b⟩, divAlg(⟨a,b⟩))"
apply (auto simp add: quorem_0 divAlg_def)
apply (safe intro!: quorem_neg posDivAlg_correct negDivAlg_correct
posDivAlg_type negDivAlg_type)
apply (auto simp add: quorem_def neq_iff_zless)
txt‹linear arithmetic from here on›
apply (auto simp add: zle_def)
done
lemma divAlg_type: "⟦a ∈ int; b ∈ int⟧ ⟹ divAlg(⟨a,b⟩) ∈ int * int"
apply (auto simp add: divAlg_def)
apply (auto simp add: posDivAlg_type negDivAlg_type negateSnd_type)
done
lemma zdiv_intify1 [simp]: "intify(x) zdiv y = x zdiv y"
by (simp add: zdiv_def)
lemma zdiv_intify2 [simp]: "x zdiv intify(y) = x zdiv y"
by (simp add: zdiv_def)
lemma zdiv_type [iff,TC]: "z zdiv w ∈ int"
unfolding zdiv_def
apply (blast intro: fst_type divAlg_type)
done
lemma zmod_intify1 [simp]: "intify(x) zmod y = x zmod y"
by (simp add: zmod_def)
lemma zmod_intify2 [simp]: "x zmod intify(y) = x zmod y"
by (simp add: zmod_def)
lemma zmod_type [iff,TC]: "z zmod w ∈ int"
unfolding zmod_def
apply (rule snd_type)
apply (blast intro: divAlg_type)
done
lemma DIVISION_BY_ZERO_ZDIV: "a zdiv #0 = #0"
by (simp add: zdiv_def divAlg_def posDivAlg_zero_divisor)
lemma DIVISION_BY_ZERO_ZMOD: "a zmod #0 = intify(a)"
by (simp add: zmod_def divAlg_def posDivAlg_zero_divisor)
lemma raw_zmod_zdiv_equality:
"⟦a ∈ int; b ∈ int⟧ ⟹ a = b $* (a zdiv b) $+ (a zmod b)"
apply (case_tac "b = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (cut_tac a = "a" and b = "b" in divAlg_correct)
apply (auto simp add: quorem_def zdiv_def zmod_def split_def)
done
lemma zmod_zdiv_equality: "intify(a) = b $* (a zdiv b) $+ (a zmod b)"
apply (rule trans)
apply (rule_tac b = "intify (b)" in raw_zmod_zdiv_equality)
apply auto
done
lemma pos_mod: "#0 $< b ⟹ #0 $≤ a zmod b ∧ a zmod b $< b"
apply (cut_tac a = "intify (a)" and b = "intify (b)" in divAlg_correct)
apply (auto simp add: intify_eq_0_iff_zle quorem_def zmod_def split_def)
apply (blast dest: zle_zless_trans)+
done
lemmas pos_mod_sign = pos_mod [THEN conjunct1]
and pos_mod_bound = pos_mod [THEN conjunct2]
lemma neg_mod: "b $< #0 ⟹ a zmod b $≤ #0 ∧ b $< a zmod b"
apply (cut_tac a = "intify (a)" and b = "intify (b)" in divAlg_correct)
apply (auto simp add: intify_eq_0_iff_zle quorem_def zmod_def split_def)
apply (blast dest: zle_zless_trans)
apply (blast dest: zless_trans)+
done
lemmas neg_mod_sign = neg_mod [THEN conjunct1]
and neg_mod_bound = neg_mod [THEN conjunct2]
lemma quorem_div_mod:
"⟦b ≠ #0; a ∈ int; b ∈ int⟧
⟹ quorem (⟨a,b⟩, <a zdiv b, a zmod b>)"
apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
apply (auto simp add: quorem_def neq_iff_zless pos_mod_sign pos_mod_bound
neg_mod_sign neg_mod_bound)
done
lemma quorem_div:
"⟦quorem(⟨a,b⟩,⟨q,r⟩); b ≠ #0; a ∈ int; b ∈ int; q ∈ int⟧
⟹ a zdiv b = q"
by (blast intro: quorem_div_mod [THEN unique_quotient])
lemma quorem_mod:
"⟦quorem(⟨a,b⟩,⟨q,r⟩); b ≠ #0; a ∈ int; b ∈ int; q ∈ int; r ∈ int⟧
⟹ a zmod b = r"
by (blast intro: quorem_div_mod [THEN unique_remainder])
lemma zdiv_pos_pos_trivial_raw:
"⟦a ∈ int; b ∈ int; #0 $≤ a; a $< b⟧ ⟹ a zdiv b = #0"
apply (rule quorem_div)
apply (auto simp add: quorem_def)
apply (blast dest: zle_zless_trans)+
done
lemma zdiv_pos_pos_trivial: "⟦#0 $≤ a; a $< b⟧ ⟹ a zdiv b = #0"
apply (cut_tac a = "intify (a)" and b = "intify (b)"
in zdiv_pos_pos_trivial_raw)
apply auto
done
lemma zdiv_neg_neg_trivial_raw:
"⟦a ∈ int; b ∈ int; a $≤ #0; b $< a⟧ ⟹ a zdiv b = #0"
apply (rule_tac r = "a" in quorem_div)
apply (auto simp add: quorem_def)
apply (blast dest: zle_zless_trans zless_trans)+
done
lemma zdiv_neg_neg_trivial: "⟦a $≤ #0; b $< a⟧ ⟹ a zdiv b = #0"
apply (cut_tac a = "intify (a)" and b = "intify (b)"
in zdiv_neg_neg_trivial_raw)
apply auto
done
lemma zadd_le_0_lemma: "⟦a$+b $≤ #0; #0 $< a; #0 $< b⟧ ⟹ False"
apply (drule_tac z' = "#0" and z = "b" in zadd_zless_mono)
apply (auto simp add: zle_def)
apply (blast dest: zless_trans)
done
lemma zdiv_pos_neg_trivial_raw:
"⟦a ∈ int; b ∈ int; #0 $< a; a$+b $≤ #0⟧ ⟹ a zdiv b = #-1"
apply (rule_tac r = "a $+ b" in quorem_div)
apply (auto simp add: quorem_def)
apply (blast dest: zadd_le_0_lemma zle_zless_trans)+
done
lemma zdiv_pos_neg_trivial: "⟦#0 $< a; a$+b $≤ #0⟧ ⟹ a zdiv b = #-1"
apply (cut_tac a = "intify (a)" and b = "intify (b)"
in zdiv_pos_neg_trivial_raw)
apply auto
done
lemma zmod_pos_pos_trivial_raw:
"⟦a ∈ int; b ∈ int; #0 $≤ a; a $< b⟧ ⟹ a zmod b = a"
apply (rule_tac q = "#0" in quorem_mod)
apply (auto simp add: quorem_def)
apply (blast dest: zle_zless_trans)+
done
lemma zmod_pos_pos_trivial: "⟦#0 $≤ a; a $< b⟧ ⟹ a zmod b = intify(a)"
apply (cut_tac a = "intify (a)" and b = "intify (b)"
in zmod_pos_pos_trivial_raw)
apply auto
done
lemma zmod_neg_neg_trivial_raw:
"⟦a ∈ int; b ∈ int; a $≤ #0; b $< a⟧ ⟹ a zmod b = a"
apply (rule_tac q = "#0" in quorem_mod)
apply (auto simp add: quorem_def)
apply (blast dest: zle_zless_trans zless_trans)+
done
lemma zmod_neg_neg_trivial: "⟦a $≤ #0; b $< a⟧ ⟹ a zmod b = intify(a)"
apply (cut_tac a = "intify (a)" and b = "intify (b)"
in zmod_neg_neg_trivial_raw)
apply auto
done
lemma zmod_pos_neg_trivial_raw:
"⟦a ∈ int; b ∈ int; #0 $< a; a$+b $≤ #0⟧ ⟹ a zmod b = a$+b"
apply (rule_tac q = "#-1" in quorem_mod)
apply (auto simp add: quorem_def)
apply (blast dest: zadd_le_0_lemma zle_zless_trans)+
done
lemma zmod_pos_neg_trivial: "⟦#0 $< a; a$+b $≤ #0⟧ ⟹ a zmod b = a$+b"
apply (cut_tac a = "intify (a)" and b = "intify (b)"
in zmod_pos_neg_trivial_raw)
apply auto
done
lemma zdiv_zminus_zminus_raw:
"⟦a ∈ int; b ∈ int⟧ ⟹ ($-a) zdiv ($-b) = a zdiv b"
apply (case_tac "b = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_div])
apply auto
done
lemma zdiv_zminus_zminus [simp]: "($-a) zdiv ($-b) = a zdiv b"
apply (cut_tac a = "intify (a)" and b = "intify (b)" in zdiv_zminus_zminus_raw)
apply auto
done
lemma zmod_zminus_zminus_raw:
"⟦a ∈ int; b ∈ int⟧ ⟹ ($-a) zmod ($-b) = $- (a zmod b)"
apply (case_tac "b = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_mod])
apply auto
done
lemma zmod_zminus_zminus [simp]: "($-a) zmod ($-b) = $- (a zmod b)"
apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_zminus_zminus_raw)
apply auto
done
subsection‹division of a number by itself›
lemma self_quotient_aux1: "⟦#0 $< a; a = r $+ a$*q; r $< a⟧ ⟹ #1 $≤ q"
apply (subgoal_tac "#0 $< a$*q")
apply (cut_tac w = "#0" and z = "q" in add1_zle_iff)
apply (simp add: int_0_less_mult_iff)
apply (blast dest: zless_trans)
apply (drule_tac t = "λx. x $- r" in subst_context)
apply (drule sym)
apply (simp add: zcompare_rls)
done
lemma self_quotient_aux2: "⟦#0 $< a; a = r $+ a$*q; #0 $≤ r⟧ ⟹ q $≤ #1"
apply (subgoal_tac "#0 $≤ a$* (#1$-q)")
apply (simp add: int_0_le_mult_iff zcompare_rls)
apply (blast dest: zle_zless_trans)
apply (simp add: zdiff_zmult_distrib2)
apply (drule_tac t = "λx. x $- a $* q" in subst_context)
apply (simp add: zcompare_rls)
done
lemma self_quotient:
"⟦quorem(⟨a,a⟩,⟨q,r⟩); a ∈ int; q ∈ int; a ≠ #0⟧ ⟹ q = #1"
apply (simp add: split_ifs quorem_def neq_iff_zless)
apply (rule zle_anti_sym)
apply safe
apply auto
prefer 4 apply (blast dest: zless_trans)
apply (blast dest: zless_trans)
apply (rule_tac [3] a = "$-a" and r = "$-r" in self_quotient_aux1)
apply (rule_tac a = "$-a" and r = "$-r" in self_quotient_aux2)
apply (rule_tac [6] zminus_equation [THEN iffD1])
apply (rule_tac [2] zminus_equation [THEN iffD1])
apply (force intro: self_quotient_aux1 self_quotient_aux2
simp add: zadd_commute zmult_zminus)+
done
lemma self_remainder:
"⟦quorem(⟨a,a⟩,⟨q,r⟩); a ∈ int; q ∈ int; r ∈ int; a ≠ #0⟧ ⟹ r = #0"
apply (frule self_quotient)
apply (auto simp add: quorem_def)
done
lemma zdiv_self_raw: "⟦a ≠ #0; a ∈ int⟧ ⟹ a zdiv a = #1"
apply (blast intro: quorem_div_mod [THEN self_quotient])
done
lemma zdiv_self [simp]: "intify(a) ≠ #0 ⟹ a zdiv a = #1"
apply (drule zdiv_self_raw)
apply auto
done
lemma zmod_self_raw: "a ∈ int ⟹ a zmod a = #0"
apply (case_tac "a = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (blast intro: quorem_div_mod [THEN self_remainder])
done
lemma zmod_self [simp]: "a zmod a = #0"
apply (cut_tac a = "intify (a)" in zmod_self_raw)
apply auto
done
subsection‹Computation of division and remainder›
lemma zdiv_zero [simp]: "#0 zdiv b = #0"
by (simp add: zdiv_def divAlg_def)
lemma zdiv_eq_minus1: "#0 $< b ⟹ #-1 zdiv b = #-1"
by (simp (no_asm_simp) add: zdiv_def divAlg_def)
lemma zmod_zero [simp]: "#0 zmod b = #0"
by (simp add: zmod_def divAlg_def)
lemma zdiv_minus1: "#0 $< b ⟹ #-1 zdiv b = #-1"
by (simp add: zdiv_def divAlg_def)
lemma zmod_minus1: "#0 $< b ⟹ #-1 zmod b = b $- #1"
by (simp add: zmod_def divAlg_def)
lemma zdiv_pos_pos: "⟦#0 $< a; #0 $≤ b⟧
⟹ a zdiv b = fst (posDivAlg(<intify(a), intify(b)>))"
apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
apply (auto simp add: zle_def)
done
lemma zmod_pos_pos:
"⟦#0 $< a; #0 $≤ b⟧
⟹ a zmod b = snd (posDivAlg(<intify(a), intify(b)>))"
apply (simp (no_asm_simp) add: zmod_def divAlg_def)
apply (auto simp add: zle_def)
done
lemma zdiv_neg_pos:
"⟦a $< #0; #0 $< b⟧
⟹ a zdiv b = fst (negDivAlg(<intify(a), intify(b)>))"
apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
apply (blast dest: zle_zless_trans)
done
lemma zmod_neg_pos:
"⟦a $< #0; #0 $< b⟧
⟹ a zmod b = snd (negDivAlg(<intify(a), intify(b)>))"
apply (simp (no_asm_simp) add: zmod_def divAlg_def)
apply (blast dest: zle_zless_trans)
done
lemma zdiv_pos_neg:
"⟦#0 $< a; b $< #0⟧
⟹ a zdiv b = fst (negateSnd(negDivAlg (<$-a, $-b>)))"
apply (simp (no_asm_simp) add: zdiv_def divAlg_def intify_eq_0_iff_zle)
apply auto
apply (blast dest: zle_zless_trans)+
apply (blast dest: zless_trans)
apply (blast intro: zless_imp_zle)
done
lemma zmod_pos_neg:
"⟦#0 $< a; b $< #0⟧
⟹ a zmod b = snd (negateSnd(negDivAlg (<$-a, $-b>)))"
apply (simp (no_asm_simp) add: zmod_def divAlg_def intify_eq_0_iff_zle)
apply auto
apply (blast dest: zle_zless_trans)+
apply (blast dest: zless_trans)
apply (blast intro: zless_imp_zle)
done
lemma zdiv_neg_neg:
"⟦a $< #0; b $≤ #0⟧
⟹ a zdiv b = fst (negateSnd(posDivAlg(<$-a, $-b>)))"
apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
apply auto
apply (blast dest!: zle_zless_trans)+
done
lemma zmod_neg_neg:
"⟦a $< #0; b $≤ #0⟧
⟹ a zmod b = snd (negateSnd(posDivAlg(<$-a, $-b>)))"
apply (simp (no_asm_simp) add: zmod_def divAlg_def)
apply auto
apply (blast dest!: zle_zless_trans)+
done
declare zdiv_pos_pos [of "integ_of (v)" "integ_of (w)", simp] for v w
declare zdiv_neg_pos [of "integ_of (v)" "integ_of (w)", simp] for v w
declare zdiv_pos_neg [of "integ_of (v)" "integ_of (w)", simp] for v w
declare zdiv_neg_neg [of "integ_of (v)" "integ_of (w)", simp] for v w
declare zmod_pos_pos [of "integ_of (v)" "integ_of (w)", simp] for v w
declare zmod_neg_pos [of "integ_of (v)" "integ_of (w)", simp] for v w
declare zmod_pos_neg [of "integ_of (v)" "integ_of (w)", simp] for v w
declare zmod_neg_neg [of "integ_of (v)" "integ_of (w)", simp] for v w
declare posDivAlg_eqn [of concl: "integ_of (v)" "integ_of (w)", simp] for v w
declare negDivAlg_eqn [of concl: "integ_of (v)" "integ_of (w)", simp] for v w
lemma zmod_1 [simp]: "a zmod #1 = #0"
apply (cut_tac a = "a" and b = "#1" in pos_mod_sign)
apply (cut_tac [2] a = "a" and b = "#1" in pos_mod_bound)
apply auto
apply (drule add1_zle_iff [THEN iffD2])
apply (rule zle_anti_sym)
apply auto
done
lemma zdiv_1 [simp]: "a zdiv #1 = intify(a)"
apply (cut_tac a = "a" and b = "#1" in zmod_zdiv_equality)
apply auto
done
lemma zmod_minus1_right [simp]: "a zmod #-1 = #0"
apply (cut_tac a = "a" and b = "#-1" in neg_mod_sign)
apply (cut_tac [2] a = "a" and b = "#-1" in neg_mod_bound)
apply auto
apply (drule add1_zle_iff [THEN iffD2])
apply (rule zle_anti_sym)
apply auto
done
lemma zdiv_minus1_right_raw: "a ∈ int ⟹ a zdiv #-1 = $-a"
apply (cut_tac a = "a" and b = "#-1" in zmod_zdiv_equality)
apply auto
apply (rule equation_zminus [THEN iffD2])
apply auto
done
lemma zdiv_minus1_right: "a zdiv #-1 = $-a"
apply (cut_tac a = "intify (a)" in zdiv_minus1_right_raw)
apply auto
done
declare zdiv_minus1_right [simp]
subsection‹Monotonicity in the first argument (divisor)›
lemma zdiv_mono1: "⟦a $≤ a'; #0 $< b⟧ ⟹ a zdiv b $≤ a' zdiv b"
apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
apply (cut_tac a = "a'" and b = "b" in zmod_zdiv_equality)
apply (rule unique_quotient_lemma)
apply (erule subst)
apply (erule subst)
apply (simp_all (no_asm_simp) add: pos_mod_sign pos_mod_bound)
done
lemma zdiv_mono1_neg: "⟦a $≤ a'; b $< #0⟧ ⟹ a' zdiv b $≤ a zdiv b"
apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
apply (cut_tac a = "a'" and b = "b" in zmod_zdiv_equality)
apply (rule unique_quotient_lemma_neg)
apply (erule subst)
apply (erule subst)
apply (simp_all (no_asm_simp) add: neg_mod_sign neg_mod_bound)
done
subsection‹Monotonicity in the second argument (dividend)›
lemma q_pos_lemma:
"⟦#0 $≤ b'$*q' $+ r'; r' $< b'; #0 $< b'⟧ ⟹ #0 $≤ q'"
apply (subgoal_tac "#0 $< b'$* (q' $+ #1)")
apply (simp add: int_0_less_mult_iff)
apply (blast dest: zless_trans intro: zless_add1_iff_zle [THEN iffD1])
apply (simp add: zadd_zmult_distrib2)
apply (erule zle_zless_trans)
apply (erule zadd_zless_mono2)
done
lemma zdiv_mono2_lemma:
"⟦b$*q $+ r = b'$*q' $+ r'; #0 $≤ b'$*q' $+ r';
r' $< b'; #0 $≤ r; #0 $< b'; b' $≤ b⟧
⟹ q $≤ q'"
apply (frule q_pos_lemma, assumption+)
apply (subgoal_tac "b$*q $< b$* (q' $+ #1)")
apply (simp add: zmult_zless_cancel1)
apply (force dest: zless_add1_iff_zle [THEN iffD1] zless_trans zless_zle_trans)
apply (subgoal_tac "b$*q = r' $- r $+ b'$*q'")
prefer 2 apply (simp add: zcompare_rls)
apply (simp (no_asm_simp) add: zadd_zmult_distrib2)
apply (subst zadd_commute [of "b $* q'"], rule zadd_zless_mono)
prefer 2 apply (blast intro: zmult_zle_mono1)
apply (subgoal_tac "r' $+ #0 $< b $+ r")
apply (simp add: zcompare_rls)
apply (rule zadd_zless_mono)
apply auto
apply (blast dest: zless_zle_trans)
done
lemma zdiv_mono2_raw:
"⟦#0 $≤ a; #0 $< b'; b' $≤ b; a ∈ int⟧
⟹ a zdiv b $≤ a zdiv b'"
apply (subgoal_tac "#0 $< b")
prefer 2 apply (blast dest: zless_zle_trans)
apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
apply (cut_tac a = "a" and b = "b'" in zmod_zdiv_equality)
apply (rule zdiv_mono2_lemma)
apply (erule subst)
apply (erule subst)
apply (simp_all add: pos_mod_sign pos_mod_bound)
done
lemma zdiv_mono2:
"⟦#0 $≤ a; #0 $< b'; b' $≤ b⟧
⟹ a zdiv b $≤ a zdiv b'"
apply (cut_tac a = "intify (a)" in zdiv_mono2_raw)
apply auto
done
lemma q_neg_lemma:
"⟦b'$*q' $+ r' $< #0; #0 $≤ r'; #0 $< b'⟧ ⟹ q' $< #0"
apply (subgoal_tac "b'$*q' $< #0")
prefer 2 apply (force intro: zle_zless_trans)
apply (simp add: zmult_less_0_iff)
apply (blast dest: zless_trans)
done
lemma zdiv_mono2_neg_lemma:
"⟦b$*q $+ r = b'$*q' $+ r'; b'$*q' $+ r' $< #0;
r $< b; #0 $≤ r'; #0 $< b'; b' $≤ b⟧
⟹ q' $≤ q"
apply (subgoal_tac "#0 $< b")
prefer 2 apply (blast dest: zless_zle_trans)
apply (frule q_neg_lemma, assumption+)
apply (subgoal_tac "b$*q' $< b$* (q $+ #1)")
apply (simp add: zmult_zless_cancel1)
apply (blast dest: zless_trans zless_add1_iff_zle [THEN iffD1])
apply (simp (no_asm_simp) add: zadd_zmult_distrib2)
apply (subgoal_tac "b$*q' $≤ b'$*q'")
prefer 2
apply (simp add: zmult_zle_cancel2)
apply (blast dest: zless_trans)
apply (subgoal_tac "b'$*q' $+ r $< b $+ (b$*q $+ r)")
prefer 2
apply (erule ssubst)
apply simp
apply (drule_tac w' = "r" and z' = "#0" in zadd_zless_mono)
apply (assumption)
apply simp
apply (simp (no_asm_use) add: zadd_commute)
apply (rule zle_zless_trans)
prefer 2 apply (assumption)
apply (simp (no_asm_simp) add: zmult_zle_cancel2)
apply (blast dest: zless_trans)
done
lemma zdiv_mono2_neg_raw:
"⟦a $< #0; #0 $< b'; b' $≤ b; a ∈ int⟧
⟹ a zdiv b' $≤ a zdiv b"
apply (subgoal_tac "#0 $< b")
prefer 2 apply (blast dest: zless_zle_trans)
apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
apply (cut_tac a = "a" and b = "b'" in zmod_zdiv_equality)
apply (rule zdiv_mono2_neg_lemma)
apply (erule subst)
apply (erule subst)
apply (simp_all add: pos_mod_sign pos_mod_bound)
done
lemma zdiv_mono2_neg: "⟦a $< #0; #0 $< b'; b' $≤ b⟧
⟹ a zdiv b' $≤ a zdiv b"
apply (cut_tac a = "intify (a)" in zdiv_mono2_neg_raw)
apply auto
done
subsection‹More algebraic laws for zdiv and zmod›
lemma zmult1_lemma:
"⟦quorem(⟨b,c⟩, ⟨q,r⟩); c ∈ int; c ≠ #0⟧
⟹ quorem (<a$*b, c>, <a$*q $+ (a$*r) zdiv c, (a$*r) zmod c>)"
apply (auto simp add: split_ifs quorem_def neq_iff_zless zadd_zmult_distrib2
pos_mod_sign pos_mod_bound neg_mod_sign neg_mod_bound)
apply (auto intro: raw_zmod_zdiv_equality)
done
lemma zdiv_zmult1_eq_raw:
"⟦b ∈ int; c ∈ int⟧
⟹ (a$*b) zdiv c = a$*(b zdiv c) $+ a$*(b zmod c) zdiv c"
apply (case_tac "c = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (rule quorem_div_mod [THEN zmult1_lemma, THEN quorem_div])
apply auto
done
lemma zdiv_zmult1_eq: "(a$*b) zdiv c = a$*(b zdiv c) $+ a$*(b zmod c) zdiv c"
apply (cut_tac b = "intify (b)" and c = "intify (c)" in zdiv_zmult1_eq_raw)
apply auto
done
lemma zmod_zmult1_eq_raw:
"⟦b ∈ int; c ∈ int⟧ ⟹ (a$*b) zmod c = a$*(b zmod c) zmod c"
apply (case_tac "c = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (rule quorem_div_mod [THEN zmult1_lemma, THEN quorem_mod])
apply auto
done
lemma zmod_zmult1_eq: "(a$*b) zmod c = a$*(b zmod c) zmod c"
apply (cut_tac b = "intify (b)" and c = "intify (c)" in zmod_zmult1_eq_raw)
apply auto
done
lemma zmod_zmult1_eq': "(a$*b) zmod c = ((a zmod c) $* b) zmod c"
apply (rule trans)
apply (rule_tac b = " (b $* a) zmod c" in trans)
apply (rule_tac [2] zmod_zmult1_eq)
apply (simp_all (no_asm) add: zmult_commute)
done
lemma zmod_zmult_distrib: "(a$*b) zmod c = ((a zmod c) $* (b zmod c)) zmod c"
apply (rule zmod_zmult1_eq' [THEN trans])
apply (rule zmod_zmult1_eq)
done
lemma zdiv_zmult_self1 [simp]: "intify(b) ≠ #0 ⟹ (a$*b) zdiv b = intify(a)"
by (simp add: zdiv_zmult1_eq)
lemma zdiv_zmult_self2 [simp]: "intify(b) ≠ #0 ⟹ (b$*a) zdiv b = intify(a)"
by (simp add: zmult_commute)
lemma zmod_zmult_self1 [simp]: "(a$*b) zmod b = #0"
by (simp add: zmod_zmult1_eq)
lemma zmod_zmult_self2 [simp]: "(b$*a) zmod b = #0"
by (simp add: zmult_commute zmod_zmult1_eq)
lemma zadd1_lemma:
"⟦quorem(⟨a,c⟩, ⟨aq,ar⟩); quorem(⟨b,c⟩, ⟨bq,br⟩);
c ∈ int; c ≠ #0⟧
⟹ quorem (<a$+b, c>, <aq $+ bq $+ (ar$+br) zdiv c, (ar$+br) zmod c>)"
apply (auto simp add: split_ifs quorem_def neq_iff_zless zadd_zmult_distrib2
pos_mod_sign pos_mod_bound neg_mod_sign neg_mod_bound)
apply (auto intro: raw_zmod_zdiv_equality)
done
lemma zdiv_zadd1_eq_raw:
"⟦a ∈ int; b ∈ int; c ∈ int⟧ ⟹
(a$+b) zdiv c = a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c)"
apply (case_tac "c = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod,
THEN quorem_div])
done
lemma zdiv_zadd1_eq:
"(a$+b) zdiv c = a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c)"
apply (cut_tac a = "intify (a)" and b = "intify (b)" and c = "intify (c)"
in zdiv_zadd1_eq_raw)
apply auto
done
lemma zmod_zadd1_eq_raw:
"⟦a ∈ int; b ∈ int; c ∈ int⟧
⟹ (a$+b) zmod c = (a zmod c $+ b zmod c) zmod c"
apply (case_tac "c = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod,
THEN quorem_mod])
done
lemma zmod_zadd1_eq: "(a$+b) zmod c = (a zmod c $+ b zmod c) zmod c"
apply (cut_tac a = "intify (a)" and b = "intify (b)" and c = "intify (c)"
in zmod_zadd1_eq_raw)
apply auto
done
lemma zmod_div_trivial_raw:
"⟦a ∈ int; b ∈ int⟧ ⟹ (a zmod b) zdiv b = #0"
apply (case_tac "b = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (auto simp add: neq_iff_zless pos_mod_sign pos_mod_bound
zdiv_pos_pos_trivial neg_mod_sign neg_mod_bound zdiv_neg_neg_trivial)
done
lemma zmod_div_trivial [simp]: "(a zmod b) zdiv b = #0"
apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_div_trivial_raw)
apply auto
done
lemma zmod_mod_trivial_raw:
"⟦a ∈ int; b ∈ int⟧ ⟹ (a zmod b) zmod b = a zmod b"
apply (case_tac "b = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (auto simp add: neq_iff_zless pos_mod_sign pos_mod_bound
zmod_pos_pos_trivial neg_mod_sign neg_mod_bound zmod_neg_neg_trivial)
done
lemma zmod_mod_trivial [simp]: "(a zmod b) zmod b = a zmod b"
apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_mod_trivial_raw)
apply auto
done
lemma zmod_zadd_left_eq: "(a$+b) zmod c = ((a zmod c) $+ b) zmod c"
apply (rule trans [symmetric])
apply (rule zmod_zadd1_eq)
apply (simp (no_asm))
apply (rule zmod_zadd1_eq [symmetric])
done
lemma zmod_zadd_right_eq: "(a$+b) zmod c = (a $+ (b zmod c)) zmod c"
apply (rule trans [symmetric])
apply (rule zmod_zadd1_eq)
apply (simp (no_asm))
apply (rule zmod_zadd1_eq [symmetric])
done
lemma zdiv_zadd_self1 [simp]:
"intify(a) ≠ #0 ⟹ (a$+b) zdiv a = b zdiv a $+ #1"
by (simp (no_asm_simp) add: zdiv_zadd1_eq)
lemma zdiv_zadd_self2 [simp]:
"intify(a) ≠ #0 ⟹ (b$+a) zdiv a = b zdiv a $+ #1"
by (simp (no_asm_simp) add: zdiv_zadd1_eq)
lemma zmod_zadd_self1 [simp]: "(a$+b) zmod a = b zmod a"
apply (case_tac "a = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (simp (no_asm_simp) add: zmod_zadd1_eq)
done
lemma zmod_zadd_self2 [simp]: "(b$+a) zmod a = b zmod a"
apply (case_tac "a = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (simp (no_asm_simp) add: zmod_zadd1_eq)
done
subsection‹proving a zdiv (b*c) = (a zdiv b) zdiv c›
lemma zdiv_zmult2_aux1:
"⟦#0 $< c; b $< r; r $≤ #0⟧ ⟹ b$*c $< b$*(q zmod c) $+ r"
apply (subgoal_tac "b $* (c $- q zmod c) $< r $* #1")
apply (simp add: zdiff_zmult_distrib2 zadd_commute zcompare_rls)
apply (rule zle_zless_trans)
apply (erule_tac [2] zmult_zless_mono1)
apply (rule zmult_zle_mono2_neg)
apply (auto simp add: zcompare_rls zadd_commute add1_zle_iff pos_mod_bound)
apply (blast intro: zless_imp_zle dest: zless_zle_trans)
done
lemma zdiv_zmult2_aux2:
"⟦#0 $< c; b $< r; r $≤ #0⟧ ⟹ b $* (q zmod c) $+ r $≤ #0"
apply (subgoal_tac "b $* (q zmod c) $≤ #0")
prefer 2
apply (simp add: zmult_le_0_iff pos_mod_sign)
apply (blast intro: zless_imp_zle dest: zless_zle_trans)
apply (drule zadd_zle_mono)
apply assumption
apply (simp add: zadd_commute)
done
lemma zdiv_zmult2_aux3:
"⟦#0 $< c; #0 $≤ r; r $< b⟧ ⟹ #0 $≤ b $* (q zmod c) $+ r"
apply (subgoal_tac "#0 $≤ b $* (q zmod c)")
prefer 2
apply (simp add: int_0_le_mult_iff pos_mod_sign)
apply (blast intro: zless_imp_zle dest: zle_zless_trans)
apply (drule zadd_zle_mono)
apply assumption
apply (simp add: zadd_commute)
done
lemma zdiv_zmult2_aux4:
"⟦#0 $< c; #0 $≤ r; r $< b⟧ ⟹ b $* (q zmod c) $+ r $< b $* c"
apply (subgoal_tac "r $* #1 $< b $* (c $- q zmod c)")
apply (simp add: zdiff_zmult_distrib2 zadd_commute zcompare_rls)
apply (rule zless_zle_trans)
apply (erule zmult_zless_mono1)
apply (rule_tac [2] zmult_zle_mono2)
apply (auto simp add: zcompare_rls zadd_commute add1_zle_iff pos_mod_bound)
apply (blast intro: zless_imp_zle dest: zle_zless_trans)
done
lemma zdiv_zmult2_lemma:
"⟦quorem (⟨a,b⟩, ⟨q,r⟩); a ∈ int; b ∈ int; b ≠ #0; #0 $< c⟧
⟹ quorem (<a,b$*c>, <q zdiv c, b$*(q zmod c) $+ r>)"
apply (auto simp add: zmult_ac zmod_zdiv_equality [symmetric] quorem_def
neq_iff_zless int_0_less_mult_iff
zadd_zmult_distrib2 [symmetric] zdiv_zmult2_aux1 zdiv_zmult2_aux2
zdiv_zmult2_aux3 zdiv_zmult2_aux4)
apply (blast dest: zless_trans)+
done
lemma zdiv_zmult2_eq_raw:
"⟦#0 $< c; a ∈ int; b ∈ int⟧ ⟹ a zdiv (b$*c) = (a zdiv b) zdiv c"
apply (case_tac "b = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (rule quorem_div_mod [THEN zdiv_zmult2_lemma, THEN quorem_div])
apply (auto simp add: intify_eq_0_iff_zle)
apply (blast dest: zle_zless_trans)
done
lemma zdiv_zmult2_eq: "#0 $< c ⟹ a zdiv (b$*c) = (a zdiv b) zdiv c"
apply (cut_tac a = "intify (a)" and b = "intify (b)" in zdiv_zmult2_eq_raw)
apply auto
done
lemma zmod_zmult2_eq_raw:
"⟦#0 $< c; a ∈ int; b ∈ int⟧
⟹ a zmod (b$*c) = b$*(a zdiv b zmod c) $+ a zmod b"
apply (case_tac "b = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (rule quorem_div_mod [THEN zdiv_zmult2_lemma, THEN quorem_mod])
apply (auto simp add: intify_eq_0_iff_zle)
apply (blast dest: zle_zless_trans)
done
lemma zmod_zmult2_eq:
"#0 $< c ⟹ a zmod (b$*c) = b$*(a zdiv b zmod c) $+ a zmod b"
apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_zmult2_eq_raw)
apply auto
done
subsection‹Cancellation of common factors in "zdiv"›
lemma zdiv_zmult_zmult1_aux1:
"⟦#0 $< b; intify(c) ≠ #0⟧ ⟹ (c$*a) zdiv (c$*b) = a zdiv b"
apply (subst zdiv_zmult2_eq)
apply auto
done
lemma zdiv_zmult_zmult1_aux2:
"⟦b $< #0; intify(c) ≠ #0⟧ ⟹ (c$*a) zdiv (c$*b) = a zdiv b"
apply (subgoal_tac " (c $* ($-a)) zdiv (c $* ($-b)) = ($-a) zdiv ($-b)")
apply (rule_tac [2] zdiv_zmult_zmult1_aux1)
apply auto
done
lemma zdiv_zmult_zmult1_raw:
"⟦intify(c) ≠ #0; b ∈ int⟧ ⟹ (c$*a) zdiv (c$*b) = a zdiv b"
apply (case_tac "b = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (auto simp add: neq_iff_zless [of b]
zdiv_zmult_zmult1_aux1 zdiv_zmult_zmult1_aux2)
done
lemma zdiv_zmult_zmult1: "intify(c) ≠ #0 ⟹ (c$*a) zdiv (c$*b) = a zdiv b"
apply (cut_tac b = "intify (b)" in zdiv_zmult_zmult1_raw)
apply auto
done
lemma zdiv_zmult_zmult2: "intify(c) ≠ #0 ⟹ (a$*c) zdiv (b$*c) = a zdiv b"
apply (drule zdiv_zmult_zmult1)
apply (auto simp add: zmult_commute)
done
subsection‹Distribution of factors over "zmod"›
lemma zmod_zmult_zmult1_aux1:
"⟦#0 $< b; intify(c) ≠ #0⟧
⟹ (c$*a) zmod (c$*b) = c $* (a zmod b)"
apply (subst zmod_zmult2_eq)
apply auto
done
lemma zmod_zmult_zmult1_aux2:
"⟦b $< #0; intify(c) ≠ #0⟧
⟹ (c$*a) zmod (c$*b) = c $* (a zmod b)"
apply (subgoal_tac " (c $* ($-a)) zmod (c $* ($-b)) = c $* (($-a) zmod ($-b))")
apply (rule_tac [2] zmod_zmult_zmult1_aux1)
apply auto
done
lemma zmod_zmult_zmult1_raw:
"⟦b ∈ int; c ∈ int⟧ ⟹ (c$*a) zmod (c$*b) = c $* (a zmod b)"
apply (case_tac "b = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (case_tac "c = #0")
apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD)
apply (auto simp add: neq_iff_zless [of b]
zmod_zmult_zmult1_aux1 zmod_zmult_zmult1_aux2)
done
lemma zmod_zmult_zmult1: "(c$*a) zmod (c$*b) = c $* (a zmod b)"
apply (cut_tac b = "intify (b)" and c = "intify (c)" in zmod_zmult_zmult1_raw)
apply auto
done
lemma zmod_zmult_zmult2: "(a$*c) zmod (b$*c) = (a zmod b) $* c"
apply (cut_tac c = "c" in zmod_zmult_zmult1)
apply (auto simp add: zmult_commute)
done
lemma zdiv_neg_pos_less0: "⟦a $< #0; #0 $< b⟧ ⟹ a zdiv b $< #0"
apply (subgoal_tac "a zdiv b $≤ #-1")
apply (erule zle_zless_trans)
apply (simp (no_asm))
apply (rule zle_trans)
apply (rule_tac a' = "#-1" in zdiv_mono1)
apply (rule zless_add1_iff_zle [THEN iffD1])
apply (simp (no_asm))
apply (auto simp add: zdiv_minus1)
done
lemma zdiv_nonneg_neg_le0: "⟦#0 $≤ a; b $< #0⟧ ⟹ a zdiv b $≤ #0"
apply (drule zdiv_mono1_neg)
apply auto
done
lemma pos_imp_zdiv_nonneg_iff: "#0 $< b ⟹ (#0 $≤ a zdiv b) ⟷ (#0 $≤ a)"
apply auto
apply (drule_tac [2] zdiv_mono1)
apply (auto simp add: neq_iff_zless)
apply (simp (no_asm_use) add: not_zless_iff_zle [THEN iff_sym])
apply (blast intro: zdiv_neg_pos_less0)
done
lemma neg_imp_zdiv_nonneg_iff: "b $< #0 ⟹ (#0 $≤ a zdiv b) ⟷ (a $≤ #0)"
apply (subst zdiv_zminus_zminus [symmetric])
apply (rule iff_trans)
apply (rule pos_imp_zdiv_nonneg_iff)
apply auto
done
lemma pos_imp_zdiv_neg_iff: "#0 $< b ⟹ (a zdiv b $< #0) ⟷ (a $< #0)"
apply (simp (no_asm_simp) add: not_zle_iff_zless [THEN iff_sym])
apply (erule pos_imp_zdiv_nonneg_iff)
done
lemma neg_imp_zdiv_neg_iff: "b $< #0 ⟹ (a zdiv b $< #0) ⟷ (#0 $< a)"
apply (simp (no_asm_simp) add: not_zle_iff_zless [THEN iff_sym])
apply (erule neg_imp_zdiv_nonneg_iff)
done
end